On the Safety and Efficiency of Virtual Firewall Elasticity Control

Hongda Li¹, Juan Deng¹, Hongxin Hu¹, Kuang-Ching Wang¹ Gail-Joon Ahn², Ziming Zhao² and Wonkyu Han² ¹Clemson University and ²Arizona State University

Motivation

Traditional Hardware-based Firewall

Fixed location & constant capacity

- Implementation
- We implemented VFW Controller in real NFV/ • SDN platforms
- > Xen-4.4.1, ClickOS

- New Requirements
 - Virtualized environments
 - Perimeter is blur & fluid
 - ✓ Services need migration often
 - Significant traffic volume variation
 - Elastic capacity
- New Trends **
 - > NFV: create and destroy software instances dynamically
 - SDN: dynamic traffic steering

NFV Virtual Firewall **SDN**

- Virtual Firewall Elastic Scaling
 - \rightarrow Overload \rightarrow elastic scaling out
 - \succ Underload \rightarrow elastic scaling in
- Challenges to achieve *safe*, *efficient* and • optimal virtual firewall scaling
 - Split or copy firewall policies?

- Core Components of VFW Controller *
 - Dependency Analysis

Our Approach

- Flow Update Analysis
- Buffer Cost Analysis
- **Optimal Scaling Calculation**
- **Dependency Analysis**
 - Reasons to analyze dependencies
 - Intra-dependency for firewall rule migration
 - Inter-dependency for flow rule update

Inter-dependency

- Floodlight, Open vSwitch
- Simple stateful firewall: new Click elements
- > VFW Controller: Hassel Library
- Testbed: CloudLab (https://www.cloudlab.us/)
- Source code available:
 - https://www.cloudlab.us/p/SeNFV/Firewall-VLANs

Evaluation

Evaluation of group size based on real-world ** firewall policies

- Largest firewall group contains 18 rules
- Capability to quickly scale
 - Scale in less than **1** sec for 400 firewall rules

Semantic consistency & correct flow update

"CHANGE" all $f_i \in F$

- Group-based firewall rule migration to ensure semantic consistency
- Flow Update Analysis •••
 - Update operation
 - CHANGE existing flow rules' actions
 - INSERT a new flow rule in front of an existing flow rule
 - V: firewall rule group to be migrated F: flow rule group inter-dependent with V

VFW split with TCP flow overload

- Migration impact on throughput
 - Quickly recover from migration
 - TCP connection preserved

- Performance of optimal scaling calculation
 - > 6 new instances, 1000 firewall rule groups in 110ms

Buffer overflow avoidance

✓ Prior work assumes unlimited buffer size

Optimal scaling

Minimize Update Satisfy SLAs

Avoid Buffer Overflow

> Update cost

- Number of new flow rules inserted
- **Buffer Cost Analysis** *
 - > d₁,d₂ and d₃ are transmission delays
 - \succ b₁ and b₂ are average processing time per packet
 - $\succ \lambda_i$ is the traffic rate of f_i

 $\beta = (\sum \lambda_i) \times \{d_1 + d_3 - d_2 + b_1 + b_2\}$

- **Optimal Scaling Calculation** •••
 - Scaling-out: least new instances
 - three-step heuristic \checkmark
 - Scaling-in: most merged instances
 - integer linear programming

100 underloaded virtual firewall instances in 80ms

Optimal scaling calculation for scaling-out

Publication

Deng J, Li H, Hu H, Wang KC, Ahn GJ, Zhao Z, Han W. "On the Safety and Efficiency of Virtual *Firewall Elasticity Control*" (NDSS 2017)