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Internet of Things (IoT)

Large Population Poor Security 24/7 online



• 71.8% IoT devices use Linux
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42.62 X 71.8% = 30.60 billions of Linux-based IoT devices

https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018

Linux-based IoT Devices



• Launched one of the biggest DDoS attacks in 2016

• Carried out by 150,000 compromised IoT devices 
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IoT Malware Example (Mirai Botnet)



Linux-based IoT Malware Compromise Stages
（Mirai Example)

1. Intrusion

2. Infection

3. Monetization



Linux-based IoT Malware Compromise Stages

• Brute-force login 
(93%)

• OS vulnerabilities

• App vulnerabilities

• DDoS attacks

• Data theft

• Cryptocurrency 
mining

Intrusion MonetizationInfection

• Check and customize 
environment

• Download payloads

• Execute payloads

• Remove payloads

• Kill competitors

• …
•

•Generalized Patterns Early Detection



Research Goals
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● Understand the characteristics of Linux-based 

IoT malware remote infection

● Effectively detect Linux-based IoT malware 

remote infection 



Shell Command Collections

9

● VirusShare Dataset

● 2012-06-15 to 2020-04-05 

● 3620 bash shell scripts 

● 48099 ELF files

● IoT Honeypots

● 2020-06-25 to 2020-10-13

● 182 Software IoT devices

● 32 different geo-distributed sites, 4 public clouds

● 352016 remote infection incidents
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A sample infection script in our dataset. SHA-256: 
2a151e1148fb95c7696b05db4c58d1fd8e138f0f9c8c638228c203 ad273523f8
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A sample ELF file in our dataset. SHA-256: 
cc0e1ff4ef6ae076c55c7435457dbd647789989fbfecdc04262f26 bd02deac73 



Understanding Remote Infection

● 5 Infection Phases

● 62.05% involve 5 phases

● 37.19% involve 4 phases

● 0.17% involve 3 phases

● 0.11% involve 2 phases

● 0% involve 1 phase



Understanding Remote Infection

● Command statistics

● Limited command set

● 169 from VirusShare, 52 from honeypots

● Highly concentrated 

● 0.17%, 0.81%, and 0.01% for the 20th command in shell scripts, 

ELF files, and honeypot logs

● External vs. Built-in vs. Hybrid



Understanding Remote Infection

● Fingerprinting

● Malicious Hosts (1963 unique)

● 28 are tracked by threat intelligence database

● MD5

● For 91.08% infection scripts, 17% - 31% VirusTotal engine alarm

● Trial and Error

● `cd || cd || cd` path test (87.44%)

● `wget || curl || tftp` download tool test (94.6%)

● Malicious Payload Delivery

● Via download utility (97.44%)

● Embedded malicious payload (0.47%)

● here document, base64



Understanding Remote Infection

● Shell Command Taxonomy

● 169 shell commands → 25 infection capabilities

● Generality

● Extensibility

ExecuteDownload

wget

curl

tftp

…

Change
Permission

chmod

chattr

chown

…

Infection
Capabilities

Shell
Commands

…

…nohup service

exec …



Detecting Remote Infection

● Modeling Infection Process

● Step1: generating command 

flow graph (CFG)

● identify execution paths

● Step2: building infection state 

machine (ISM)

● model infection states

● Step3: assigning weights to 

ISM through a correlation 

analysis

● Track dependencies between 

commands



● Detector Implementation

Detecting Remote Infection



Evaluation
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● Evaluation Goals

● Effectiveness Evaluation

● Deployed a large scale of software IoT devices as honeypots across 

the globe

● Generalization Evaluation

● Tested the trained model with samples that have not been used for 

training

● Performance Overhead Evaluation

● Measured CPU and Memory usage
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● Effectiveness Evaluation

● Setup

● 182 software IoT devices

● 4 public clouds

● 32 different sites

● 30 days

● Detection Results

● Incomplete infections

● New infection patterns not in our dataset

Evaluation
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● Generalization Evaluation

● 80% for training and 20% for testing

● 0.5 threshold:  0.17% FPR, 96.33% TPR, 98.83% accuracy

Evaluation
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● Performance Overhead Evaluation

● Without human interaction (left) vs. with human interaction (right)

● Memory Usage: 2.7MB for all three types of devices

3.73% 3.61%

3.85%

1.73%
2.20%

2.54%

Evaluation



Conclusions
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• Understanding Linux-based IoT Remote Infection
• Large-scale malicious shell command dataset 

• Share analysis findings

• Shell command taxonomy based on infection capabilities

• Detecting Linux-based IoT Remote Infection
• Model development

• Detector implementation

• Evaluation on large-scale deployed software IoT devices in the wild 
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