
Understanding and Detecting Remote
Infection on Linux-based IoT Devices

Hongda Li1, Qiqing Huang2, Fei Ding1, Hongxin
Hu2, Long Cheng1, Guofei Gu3, Ziming Zhao2

1 2 3

Outline

• Introduction

• Understanding Remote Infections

• Detecting Remote Infections

• Evaluation

• Conclusion

Internet of Things (IoT)

Large Population Poor Security 24/7 online

• 71.8% IoT devices use Linux

C
o

n
n

ec
te

d
d

ev
ic

es
in

b
ill

io
n

s

42.62 X 71.8% = 30.60 billions of Linux-based IoT devices

https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018

Linux-based IoT Devices

• Launched one of the biggest DDoS attacks in 2016

• Carried out by 150,000 compromised IoT devices

5

IoT Malware Example (Mirai Botnet)

Linux-based IoT Malware Compromise Stages
（Mirai Example)

1. Intrusion

2. Infection

3. Monetization

Linux-based IoT Malware Compromise Stages

• Brute-force login
(93%)

• OS vulnerabilities

• App vulnerabilities

• DDoS attacks

• Data theft

• Cryptocurrency
mining

Intrusion MonetizationInfection

• Check and customize
environment

• Download payloads

• Execute payloads

• Remove payloads

• Kill competitors

• …
•

•Generalized Patterns Early Detection

Research Goals

8

● Understand the characteristics of Linux-based

IoT malware remote infection

● Effectively detect Linux-based IoT malware

remote infection

Shell Command Collections

9

● VirusShare Dataset

● 2012-06-15 to 2020-04-05

● 3620 bash shell scripts

● 48099 ELF files

● IoT Honeypots

● 2020-06-25 to 2020-10-13

● 182 Software IoT devices

● 32 different geo-distributed sites, 4 public clouds

● 352016 remote infection incidents

10

A sample infection script in our dataset. SHA-256:
2a151e1148fb95c7696b05db4c58d1fd8e138f0f9c8c638228c203 ad273523f8

11

A sample ELF file in our dataset. SHA-256:
cc0e1ff4ef6ae076c55c7435457dbd647789989fbfecdc04262f26 bd02deac73

Understanding Remote Infection

● 5 Infection Phases

● 62.05% involve 5 phases

● 37.19% involve 4 phases

● 0.17% involve 3 phases

● 0.11% involve 2 phases

● 0% involve 1 phase

Understanding Remote Infection

● Command statistics

● Limited command set

● 169 from VirusShare, 52 from honeypots

● Highly concentrated

● 0.17%, 0.81%, and 0.01% for the 20th command in shell scripts,

ELF files, and honeypot logs

● External vs. Built-in vs. Hybrid

Understanding Remote Infection

● Fingerprinting

● Malicious Hosts (1963 unique)

● 28 are tracked by threat intelligence database

● MD5

● For 91.08% infection scripts, 17% - 31% VirusTotal engine alarm

● Trial and Error

● `cd || cd || cd` path test (87.44%)

● `wget || curl || tftp` download tool test (94.6%)

● Malicious Payload Delivery

● Via download utility (97.44%)

● Embedded malicious payload (0.47%)

● here document, base64

Understanding Remote Infection

● Shell Command Taxonomy

● 169 shell commands → 25 infection capabilities

● Generality

● Extensibility

ExecuteDownload

wget

curl

tftp

…

Change
Permission

chmod

chattr

chown

…

Infection
Capabilities

Shell
Commands

…

…nohup service

exec …

Detecting Remote Infection

● Modeling Infection Process

● Step1: generating command

flow graph (CFG)

● identify execution paths

● Step2: building infection state

machine (ISM)

● model infection states

● Step3: assigning weights to

ISM through a correlation

analysis

● Track dependencies between

commands

● Detector Implementation

Detecting Remote Infection

Evaluation

18

● Evaluation Goals

● Effectiveness Evaluation

● Deployed a large scale of software IoT devices as honeypots across

the globe

● Generalization Evaluation

● Tested the trained model with samples that have not been used for

training

● Performance Overhead Evaluation

● Measured CPU and Memory usage

19

● Effectiveness Evaluation

● Setup

● 182 software IoT devices

● 4 public clouds

● 32 different sites

● 30 days

● Detection Results

● Incomplete infections

● New infection patterns not in our dataset

Evaluation

20

● Generalization Evaluation

● 80% for training and 20% for testing

● 0.5 threshold: 0.17% FPR, 96.33% TPR, 98.83% accuracy

Evaluation

21

● Performance Overhead Evaluation

● Without human interaction (left) vs. with human interaction (right)

● Memory Usage: 2.7MB for all three types of devices

3.73% 3.61%

3.85%

1.73%
2.20%

2.54%

Evaluation

Conclusions

22

• Understanding Linux-based IoT Remote Infection
• Large-scale malicious shell command dataset

• Share analysis findings

• Shell command taxonomy based on infection capabilities

• Detecting Linux-based IoT Remote Infection
• Model development

• Detector implementation

• Evaluation on large-scale deployed software IoT devices in the wild

Thank You

Hongda Li
hongdal@g.clemson.edu

Q & A

