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Abstract
While Deep Learning-based Network Intrusion Detection Sys-
tems (DL-NIDS) have recently been significantly explored
and shown superior performance, they are insufficient to ac-
tively respond to the detected intrusions due to the semantic
gap between their detection results and actionable interpre-
tations. Furthermore, their high error costs make network
operators unwilling to respond solely based on their detection
results. The root cause of these drawbacks can be traced to the
lack of explainability of DL-NIDS. Although some methods
have been developed to explain deep learning-based systems,
they are incapable of handling the history inputs and complex
feature dependencies of structured data and do not perform
well in explaining DL-NIDS.

In this paper, we present XNIDS, a novel framework that
facilitates active intrusion responses by explaining DL-NIDS.
Our explanation method is highlighted by: (1) approximating
and sampling around history inputs; and (2) capturing feature
dependencies of structured data to achieve a high-fidelity ex-
planation. Based on the explanation results, XNIDS can fur-
ther generate actionable defense rules. We evaluate XNIDS
with four state-of-the-art DL-NIDS. Our evaluation results
show that XNIDS outperforms previous explanation methods
in terms of fidelity, sparsity, completeness, and stability, all of
which are important to active intrusion responses. Moreover,
we demonstrate that XNIDS can efficiently generate practi-
cal defense rules, help understand DL-NIDS behaviors, and
troubleshoot detection errors.

1 Introduction

Deep Learning-based Network Intrusion Detection Sys-
tems (DL-NIDS) [22, 34, 37, 46, 51] have recently shown
promising potential and demonstrated outstanding detection
performance [41, 62, 64, 82], one key enabler of which is
that DL-NIDS can detect unseen attacks [14] thanks to their
strong ability to capture complicated patterns and trivial de-
viations [25, 40]. Despite the benefits of DL-NIDS, they are
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Figure 1: An illustration of how XNIDS explains DL-NIDS
and enables active intrusion response.

insufficient to actively respond to what they detect [3] be-
cause of the semantic gap between their detection results and
actionable interpretations [70] as depicted in Fig. 1. More-
over, misdetections generated by DL-NIDS require network
operators to spend a significant amount of time and effort
on troubleshooting, resulting in high error costs [6]. These
drawbacks are rooted in the design of DL-NIDS [70] since
they maintain complex structures to capture different network
traffic patterns, which unfortunately lead to low explainabil-
ity [27]. Consequently, it is difficult to understand why DL-
NIDS make certain decisions, which makes troubleshooting
detection errors difficult and lowers the confidence of corre-
sponding intrusion responses.

Several methods [7, 19, 23, 55, 65, 67, 89] have been de-
veloped to explain results from deep learning models. Al-
though it is difficult to explain the entire prediction process
globally, existing methods provide a local explanation for a
specific input sample and the decision on it by highlighting
the most important features [55]. For example, Gradients [67],
IG [73], LRP [7], LIME [55], and SHAP [43] are used to ex-
plain image classifiers [7,8] and Natural Language Processing
(NLP) models [56, 78]. LEMNA [27], which is specifically
designed for deep learning-based security applications, can
explain binary code analysis tools [63] and malware detection
tools [68].

However, existing methods, including LEMNA, are inca-
pable of explaining DL-NIDS for the following reasons: (1)



deep learning models for image classification or malware de-
tection make decisions based on a single input sample, e.g.,
an image, a piece of binary code, etc. Such a model can be
denoted as yt = f (xt), where xt is a sample represented by a
d-dimensional feature vector (x1, ...,xd)

T . However, the in-
put samples of DL-NIDS, e.g., network packet headers, form
a time series and are interdependent with each other. Ac-
cordingly, DL-NIDS make the decision based on the current
input sample as well as k history inputs, which is denoted
as yt = f (xt ,xt−1, ...,xt−k) [46, 70]. Existing explanation ap-
proaches [27,43,55], unfortunately, are insufficient to take the
history input samples into account. For example, the typical
sampling methods for local exploration in these approaches
only sample instances in the vicinity of xt and ignore the
vicinities of xt−1, ..., and xt−k; and (2) existing explanation
approaches are insufficient to capture the complex dependen-
cies among the features since they either assume features
within the input are independent [43, 55, 73] or adjacent fea-
tures have similar contributions [27]. Those assumptions
may hold for image classification tasks where each byte in
an image independently represents the color of a pixel, and
malware detection tasks where a piece of binary code can be
interpreted as the beginning of an instruction. However, the
fields in network packet headers of DL-NIDS input samples
have well-defined meanings and complex dependencies. For
example, TCP.flag is a sub-feature of TCP, which means if
the TCP.flag feature is valid, then the TCP feature is valid
as well. Also, adjacent features do not necessarily contribute
similarly. For example, the TCP and UDP features are adjacent
but mutually exclusive.

Moreover, there is no research on utilizing the explanation
results from DL-NIDS to generate defense rules for active
intrusion responses. Existing methods, such as FIRMA [54],
utilize network signatures and blacklists to detect and respond
to network intrusions, respectively. However, those response
methodologies (e.g., blacklists) are too strict and their gener-
ated rules can only support specific defense tools. In fact, it is
crucial to generate accurate defense rules that can only alert
the traffic influenced by attacks [3], since an over-specific de-
fense rule may lead to false negatives in intrusion responses,
whereas an over-generic defense rule may result in false posi-
tives in intrusion responses. Also, it is challenging to generate
practical defense rules that can be used by heterogeneous de-
fense tools, such as iptables [32] and Pfsense [53], which
have different rule syntax and granularity.

In this paper, we present XNIDS, a new framework that
explains DL-NIDS and uses its explanation results to generate
actionable defense rules. The explanation method in XNIDS
addresses the aforementioned challenges by (1) finding a
small number of history inputs that lead to a prediction in the
vicinity of the original prediction and sampling around each
of the history inputs; and (2) capturing feature dependencies
of the structured data with feature groups and sparse group
lasso [66]. The defense rule generator in XNIDS enables

active intrusion responses by introducing defense rule scopes,
security constraints, and a unified defense rule representation
for generating accurate and practical defense rules.

To evaluate XNIDS, we apply it to four state-of-the-art
DL-NIDS: (1) the autoencoder-based Kitsune [46]; (2) the
Long-Short-Term-Memory (LSTM) based bot detection sys-
tem, ODDS [33]; (3) the Recurrent Neural Networks (RNN)
based RNN-IDS [82]; and (4) the deep autoencoder (AE)
based AE-IDS [64]. Our evaluation results show XNIDS
outperforms existing approaches in terms of fidelity, sparsity,
completeness, and stability in explaining DL-NIDS. We also
showcase that XNIDS can help troubleshoot the detection
errors of DL-NIDS. Furthermore, our experiments show that
XNIDS can generate effective defense rules for four real-
world defense tools, including iptables [32], OpenFlow [50],
Pfsense [53], and Squid [72], to defend various attacks.

The key contributions of this paper are as follows:

• We design a novel explanation method dedicated to ex-
plaining DL-NIDS. By approximating and sampling
the history inputs and capturing the feature dependen-
cies with sparse group lasso, our explanation method
generates high-fidelity, sparse, complete, and stable ex-
planation results for DL-NIDS.

• We present a defense rule generation methodology to
enable active intrusion responses. We introduce defense
rule scopes and security constraints to make rules ac-
curate and design a unified rule representation to make
defense rules applicable to heterogeneous defense tools.

• We evaluate our framework, XNIDS 1, with four state-
of-the-art DL-NIDS, demonstrate the effectiveness of
its explanation method, and showcase how it can help
understand DL-NIDS behaviors, troubleshoot detection
errors, and enable active responses.

2 Motivations and Challenges

In this section, we discuss why DL-NIDS explanation and
active intrusion response are important but challenging.

2.1 Why are DL-NIDS explanation and active
intrusion response important?

Semantic Gap. Explaining DL-NIDS bridges the semantic
gap between their detection results and actionable interpreta-
tions. Though DL-NIDS can detect various attacks, they lack
the capability to actively respond to what they find [3] due to
the semantic gap between their detection results and action-
able interpretations [70]. The detection results of DL-NIDS
are usually presented as numerical values or even simpler
labels, but network operators need to interpret the reasons

1The source code of XNIDS is available at https://github.com/
CactiLab/code-xNIDS.git.

https://github.com/CactiLab/code-xNIDS.git
https://github.com/CactiLab/code-xNIDS.git


Table 1: Comparison of the state-of-the-art explanation methods with XNIDS. means totally support, means partially
support, while means not support.

Explanation methods MLP CNN RNN History Input Feature Dependency
LRP [7], DeepLift [65] Gradients [67], IG [73], CADE [81], DeepAID [28]

GradCAM [60], CAM [88], Occlusion [19], RTIS [10], GuidedBP [71]
MEME [36]

LIME [55], SHAP [43], LEMNA [27], QII [11]
XNIDS

behind those scores for proper responses. For example, net-
work operators need to know which network entity, such as
host or flow, to act on. Explaining the detection results in a
detailed and human-understandable way, e.g., which features
are more important, gives network operators confidence in the
detection results and also provides them with an interpretation
that can be used to build the corresponding response.
Troubleshoot Errors. Explaining the DL-NIDS detection
results helps troubleshoot classification errors. The cost of
misclassification in DL-NIDS is very high, in which an at-
tacker can penetrate the network with a single false negative,
and false positives swamp the network operators with further
manual analysis [6]. Troubleshooting DL-NIDS, however,
is difficult since the models are getting more complicated
and incomprehensible for humans. Explaining the detection
results regarding inputs with important features reduces the
human effort for troubleshooting.
Active Response. Active intrusion response helps block or
shunt malicious traffic promptly. DL-NIDS detects a wide
range of attacks that require network operators to conduct
a time-consuming manual analysis before proper responses.
However, a delayed intrusion response is costly since attack-
ers may have penetrated the network. Therefore, it is impera-
tive to enable active intrusion response based on the detection
results of DL-NIDS and corresponding explanations.

2.2 Why are existing explanation approaches
insufficient in explaining DL-NIDS?

Although existing methods [7,73] have achieved great success
in explaining batch data, they are insufficient in explaining
DL-NIDS. We summarize the-state-of-the-art explanation
methods in Table 1. Existing methods interpret the individual
detection result of target deep learning model by generat-
ing an importance score vector β = (βi, ...βd)

T to describe
the importance of each feature of xt = (x1, ...,xd)

T regarding
f (xt). Based on whether or not knowing the inner workings
of the target models, these explanation methods can be cate-
gorized into whitebox [19, 60, 65, 88] or blackbox approaches
[27, 43, 55]. In the following, we show five representative
explanation methods and analyze their limitations.
IG. As shown in Equ. (1), Integrated Gradients (IG) [73] cal-
culates the importance score βi of feature xi by accumulating
the gradients regarding xi along the path xi − x′i. It is evident
that the important score βi of feature xi and β j of feature x j
(i ̸= j) are independently calculated.

βi = (xi − x′i)
∫ 1

0

∂ f (x+α(x−x′))
∂xi

dα (1)

LRP. As shown in Equ. (2), Layer-wise Relevance Propaga-
tion (LRP) [7] calculates the importance score βi for feature xi
by tracing back its contribution to the detection layer by layer.
Similar to IG, βl

i and βl
j (i ̸= j) are independently calculated

in LRP. ARRAS [5] uses LRP to explain LSTM, but it also
ignores the feature dependencies by omitting the gate neuron.

∑
i

β
1
i = ∑

i
β

2
i · ··= ∑

i
β

L
i = f (x) (2)

LIME and SHAP. As shown in Equ. (3), LIME [55] and
SHAP [73] assume each feature xi is independent while calcu-
lating the corresponding important score βi by lasso [17, 76].
Consequently, the explanations of LIME and SHAP are inde-
pendently selected features. The difference here is that when
calculating the weights vector π, LIME uses cosine similarity
while SHAP uses Shapely Values [61].

argmin
β

{
π||y−Xβ

T ||22 +λ

d

∑
j=1

||β j||1
}

(3)

LEMNA. As shown in Equ. (4), LEMNA [27] uses a mixture
of K number of regression models to calculate the important
score βi. In order to address the adjacent feature dependencies,
LEMNA assumes adjacent features have similar importance
score and encourages the flatness of the vector β by fused
lasso [77] regarding the penalty ||β j −β j−1||1.

argmin
β

K

∑π||y−Xβ
T ||2 s.t.

d

∑
i=1

||βi||1 ≤ s1,
d

∑
j=2

||β j−β j−1||1 ≤ s2

(4)
In summary, most of the existing explanation methods (e.g.

IG, LRP, GuidedBP, GradCAM, or CAM) explain Multi-
layer Perceptron (MLP) and Convolutional Neural Networks
(CNN) well but are insufficient to explain Recurrent Neural
Networks (RNN), since they assume that the features are
independent [47]. LEMNA [27] is designed to explain se-
curity applications, but the assumption of LEMNA may not
always hold. MEME [36] approximates RNN models via
decision trees and MLP. Instead of selecting relevant features
for a specific decision, MEME adopts concept extraction for
a model explanation. For local explanation, MEME directly
uses LIME [55], hence it has the same assumptions as LIME.
Consequently, as shown in Table 1, those existing explanation
methods are insufficient to explain DL-NIDS, considering the
history inputs and feature dependencies of structured data.



2.3 Challenges in Explaining DL-NIDS

Since DL-NIDS makes decisions based on the current input
samples as well as history inputs, to properly explain the
detection results, we assume datasets that contain relevant
history samples are available. We summarize the major chal-
lenges in explaining DL-NIDS as follows:
Ch1: How to consider history inputs? Existing explanation
methods [27, 43, 55] interpret a detection result by highlight-
ing the features that significantly contribute to the detection
result. However, they are insufficient to interpret the detection
results regarding history inputs. Schlegel et al. [58] assess
the quality of selected explanation methods [55,65,67,73] on
time series with a fixed number of inputs. Their experiments
show a considerable accuracy decrease for all the evaluated
explanation methods when applied to time series. Therefore,
they argue that there is a need to design more suitable expla-
nation methods on time series for better explanations.

We identify two issues with respect to considering history
inputs to explain DL-NIDS. First, it is likely to get degen-
erated explanations if only a fixed number of history inputs
are considered, since different attacks may rely on different
numbers of inputs (e.g., DDoS, OSscan), whereas it is also
infeasible to consider all the history inputs. Second, the cur-
rent input may have more influence on the detection results
of DL-NIDS than those history inputs, especially old ones.
Ch2: How to capture complex feature dependencies in struc-
tured data? Most of the existing approaches, such as IG,
LRP, and LIME, are insufficient to leverage the structure infor-
mation in data by assuming features are independent within
the input [47], which leads to poor explanation fidelity. Other
work, such as SHAP, has the feature-group (e.g., superpixel)
setting but assumes each feature inside the group has equal
credits [42, 61]. LEMNA addresses this problem by assum-
ing that adjacent features have similar contributions to the
detection results. However, the inputs for DL-NIDS are well-
structured, e.g., IP frame, with complex feature dependencies.

2.4 Challenges in Generating Defense Rules

Some approaches use the results from signature-based NIDS
for active intrusion responses [54]. However, no existing
work uses the explanation results of DL-NIDS for intrusion
responses. We identify two key challenges in enabling effec-
tive active responses with explanation results from DL-NIDS.
Ch3: How to balance precision and generalization for prac-
tical defense rule generation? Even if an explanation ap-
proach can identify the important features, e.g., IP address,
it is still challenging to generate accurate defense rules with
these features. If the generated rules are too fine-grained, e.g.,
only matching specific flows, it results in overfitting and an
overwhelming number of defense rules. On the other hand,
if the generated rules are too generic, they may disrupt be-

nign traffics. For example, explanation methods identify an
IP address, protocol, and port number as important features.
An over-generic rule that blocks all packets from the specific
protocol e.g., TCP, may be effective but disruptive.
Ch4: How to generate universally applicable defense
rules for different defense tools? Although the func-
tionalities of network defense tools, e.g., firewall and
intrusion response system, are similar, they use different
formats and rule granularity. For example, the rules in
OpenFlow [50] and iptables [32] have much different syntax.
To block TCP.SYN flood, the rule for OpenFlow looks like
<nw_src=192.168.1.10, tcp, tcp.syn, actions
= drop, priority = 1, hard_timeourt=60>,

whereas the rule for iptables looks like <iptables -A
INPUT -p tcp --syn -m limit --limit-burst 3
-j RETURN>. The rules generated by explainable DL-NIDS
should be applicable to different network defense tools.

3 Explaining Detection Results of DL-NIDS

In this section, we first introduce the goal of our explanation
method. Then, we address Ch1 and Ch2 by (1) approxi-
mating the history inputs; (2) synthesizing instances around
history inputs by Weighted Random Sampling (WRS) [16];
(3) dividing features within each input to groups regarding
their correlations; and (4) selecting important features in a
sparse manner both on the group level and the feature level.
Finally, we integrate the techniques discussed above into a
proper explanation model to derive explanation results by
approximating the detection results of DL-NIDS.

3.1 Notation and Design Goal
Notation. We use bold lowercase letters, such as x, to repre-
sent a vector and bold capital letters, such as X, to represent
a matrix or a sequence of vectors. We denote by xt the cur-
rent input and (xt−1, ...,xt−k) or Xt,k its k history inputs. An
DL-NIDS is denoted by f (xt ,xt−1, ...,xt−k) or f (xt ,Xt,k)∈R.
Denote by g(xt ,X′

t,m) ∈R a local approximation to f (xt ,Xt,k)
considering l history input, since the k used in f (·) is un-
known to g(·). We define the explanation result as e, which
contains the desired important features. We denote by || · ||1
the generic and || · ||2 the l2 norm of a vector. Denote by L(·)
the loss function that measures how faithful one model locally
approximates another. φ(·) denotes the sparsity of a vector.
Our Goal. Given an input xt , our explanation method needs
to find proper history inputs X′

t,m and a high-fidelity, sparse,
complete, and stable explanation result e. In our design, e
is determined by the parameters β of g(·). To this end, we
formulate our explanation method by the following:

argmin
g

{
L(f ,g)︸ ︷︷ ︸
Fidelity

+λ ·φ(β)︸ ︷︷ ︸
Sparsity

}
s.t.

{
||f (xt ,X′

t,m)− yt ||1 < δ︸ ︷︷ ︸
History inputs

}
(5)



3.2 Approximating History Inputs
DL-NIDS usually adopts sliding window or RNN to capture
the aggregation information of benign and abnormal traffic,
which can be described as yt = f (xt ,Xt,k). An explanation
results derived only from xt or a fixed number of history inputs
are insufficient, resulting in low fidelity explanations. Also, it
is insufficient to consider all the historical inputs.

To effectively find a small number of inputs to approx-
imate the relevant history inputs, our approach has two
steps. In step 1, we find a small l for which ||f (xt ,Xt,l)−
f (xt ,Xt,k)||1 < δ and δ is a small deviation regarding the orig-
inal detection score. We start with a configurable value for
l. If ||f (xt ,Xt,l)− f (xt ,Xt,k)||1 ≥ δ, we update l = 2l. If
||f (xt ,Xt,l)− f (xt ,Xt,k)||1 < δ, we update l = ⌊l/2⌋. There
are two termination requirements for this process: the devi-
ation δ, which determines the precise of the approximation;
and the number (U) of the largest times for updating l. We
repeat this process until one of the termination requirements
is satisfied. In step 2, from the identified l history inputs,
we choose the most relevant ones by removing some history
inputs and checking if the detection result still satisfies the
δ requirement. Intuitively, it is possible that some history
inputs within the range l are irrelevant. We denote the output
of this step as X′

t,m, which is an m×d submatrix of Xt,l and
the ′ indicates the chosen history inputs are not necessarily
consecutive ones in the original time series. To remove the
irrelevant inputs, we introduce two filters: (1) a host filter,
which removes the inputs from the same host; and (2) a proto-
col filter, which removes the inputs of the same protocol. We
first apply the host filter to the hosts one by one within l; we
then apply the protocol filter to the protocols within l. If the
host or protocol information is unavailable, we skip Step 2.

3.3 Sampling Around History Inputs
DL-NIDS considers history inputs when making decisions;
however, the latest inputs may influence the result more than
the old ones. The intuition is that the influence of the old
inputs should decrease; otherwise, DL-NIDS may suffer from
exploding gradient and insufficient convergence [24]. For
example, LSTM-based systems use forget-gate to discard the
long-term dependencies [30], reducing the influences of the
old inputs. Based on this intuition, we sample unevenly in
the vicinity of the history inputs: (1) we first assign larger
weights to the latest history inputs to demonstrate their more
significant influences on the detection result; (2) we then shift
the synthesized samples towards the latest history inputs by
WRS. In WRS, the probability of each item (pi) to be selected
is determined by its relative weight:

pi =
D(i)

∑
t−m
j=t−1 D( j)

(6)

where 0 < pi ≤ 1 is the probability for the ith input to be
selected, m is the number of history inputs, D is a decay

function to assign weights to each history input based on its
arrival order. For instance, D(i) is the weight for ith input.
Typical decay functions include exponential, Gaussian, and
linear. We denote by Zt,m the synthesized samples from X′

t,m
following WRS:

Zt,m ∼ W (X′
t,m,p) p ∈ (0,1)m (7)

where p is the probability vector for X′
t,m determined by a

decay function D. Note that we weigh the history inputs
based on their arrival order, so features of the latest history
inputs have a higher probability to be selected, while features
of the same input have the same probability to be selected.
Additionally, if history inputs and current input have a simi-
lar influence on the detection result, we can assign constant
weight to history inputs. Consequently, WRS will be reduced
to random sampling.

3.4 Capturing Feature Dependencies
DL-NIDS usually applies correlation-based methods (e.g.,
clustering) or domain knowledge to handle feature dependen-
cies of structured data for better detection performances. To
capture the feature dependencies of the structured data for an
explanation, we first divide the features into several groups
based on their correlations. Then, we apply a sparse group
lasso to the feature groups to achieve a sparse explanation.
Feature Groups. Unlike an image or a block of binary
code, where each feature has the same type (e.g., pixel or
hex value), the data samples used for DL-NIDS are well-
structured and have strict formats. For example, Kitsune [46]
uses dozens of features from the IP header as input; among
them, TCP.srcport is a sub-feature of TCP, which means
if the TCP.srcport feature is valid, then the TCP feature is
supposed to be valid as well. At the same time, the UDP is a
mutex feature of TCP, which means if the UDP feature is valid,
then the TCP feature is supposed to be invalid. Note that valid
means the value of this feature is meaningful. Invalid means
the value of this feature is unset. To achieve high-fidelity
explanations, we address the feature dependency challenge
in structured data by dividing the features of the input into
several groups regarding their correlations.

xq
t = 1Aq : xt

M

∑
q=1

||xq
t ||1 = ||xt ||1 and xi

t ·x
j
t = 0 (i ̸= j)

1Aq : xt →{0,1}, j 7→
{

1, j ∈ Aq
0, j /∈ Aq

(8)

where xq
t is qth group of xt , M is the number of groups within

xt , and 1Aq : xt is qth indicator function, which determines
whether a feature in xt belongs to group xq

t . Here each ele-
ment inside the indicator function is either 0 or 1, representing
absence or presence, respectively. We need M indicator func-
tions to divide xt into M groups. Especially, each feature must
only be present in one group.



To determine the indicator functions, we consider three sce-
narios: (1) the grouping strategy used by the target DL-NIDS
is available, which is usually determined by the domain knowl-
edge. Then we adopt the same grouping strategy to XNIDS;
(2) the dataset that contains relevant history samples are avail-
able, but the grouping strategy used by the target DL-NIDS is
unclear. Then we calculate the correlations of features with
clustering methods to create indication functions; and (3) the
grouping strategy and dataset are unavailable, and XNIDS
is forced to set the size of each group to one. Consequently,
sparse group lasso will be reduced to lasso.

Additionally, we use the same indicator functions for xt to
divide each input xi inside history inputs X′

t,m to M groups
since every input for DL-NIDS follows the same well-defined
structures. We denote the overall number of groups for xt and
X′

t,m as Q = M× (1+m).
Sparse Group Lasso. To achieve sparse explanations, we
need to minimize φ(e), namely, choose the most relevant fea-
tures from inputs as explanation results, while omitting those
that do not significantly contribute to the detection results.
Sparse group lasso is a regression method that allows prede-
fined groups of features to be selected into or out of a model
together, where all the features of a particular group are either
included or excluded. More importantly, it has the desired
effect of group-level and feature-wise sparsity [66]. There-
fore, we use sparse group lasso to enable XNIDS to meet the
sparsity requirements in explaining DL-NIDS. sparse group
lasso allows us to find the important explanatory factors in
predicting the corresponding detection result, where each
explanatory factor may be comprised of a group of features
within the inputs. At the same time, sparse group lasso helps
us to achieve the sparse effects on both the group level and the
feature level. We model the regression problem as follows:

argmin
β

{
||f −g||22 +(1−α)λ

√
pq

Q

∑
q=1

||βq||2︸ ︷︷ ︸
Group Sparsity

+ αλ||β||1︸ ︷︷ ︸
Feature Sparsity

}
(9)

where βq is a vector, which contains the coefficients for
the features in qth group; pq is the size of qth group; β =
(β1...βQ); and α ∈ [0,1] a convex combination of the lasso
and group lasso penalties. To achieve group-level sparsity, we
minimize ∑ ||βq||2, namely exclude more groups by making
||βq||2 = 0. To achieve feature-level sparsity, we minimize
||β||1, excluding more features by making ||βi||1 = 0.

3.5 Model Development
We integrate the designs discussed above into a consolidated
explanation model that explains the results of a DL-NIDS.

First, we use the proposed method in Section §3.2 to ap-
proximate the proper history inputs X′

t,m. Then, combined
with the decay function and weighted random sampling, we
can tune the sampling strategy for history inputs. Finally,
following the concept of linear approximation, we use linear

components to approximate the local decision boundary of the
DL-NIDS. Specifically, the key idea here is to utilize a local
linear model to approximate the individual decision bound-
ary around yt = f (xt ,Xt,k). The approximation procedure is
described as follows:

f (xt ,Xt,k) = f (xt ,X′
t,m)+δ = g(xt ,X′

t,m)+ ε (10)

where f (·) is the non-linear DL-NIDS, g(·) is the local ap-
proximation method, and ε is a small deviation between the
approximation and the true detection result. Guided by feature
groups, we translate g(·) into the following equation:

g(xt ,X′
t,m) =

M

∑
q=1

xq
t β

T
t,q +

t−m

∑
i=t−1

M

∑
q=1

xq
i β

T
i,q (11)

where the first component is for current input and the second
component is for history inputs. xq

i is the qth group from input
xi, and βi,q contains the corresponding coefficients for xq

i . M
is the number of feature groups within one input. m is the
number of history inputs.

Finally, by taking Equ. (10) as the seed input to create n
synthesized samples following our uneven sample strategy for
Equ. (9), we formalize our explanation model as the following
regression problem:

argmin
β

{
1

2n
||y−g(z′t ,Z

′
t,m)||22

+(1−α)λ
Q

∑
q=1

√
pq||βq||2 +αλ||β||1

} (12)

where z′t and Z′
t,m are the synthesised samples for the current

input xt and history inputs X′
t,m, respectively. y is a vector,

containing n detection results. βT
q contains the coefficients for

the features in qth group. Q is the total number of groups. pq
is the size of qth group and λ is a tuning parameter. α ∈ [0,1]
a convex combination of the lasso [76] and group lasso [83].

To solve the objective function in Equ. (12), sparse group
lasso needs to repeat two loops: a group-level outer loop
and a feature-level inner loop. The group-level outer loop
recurrently checks whether the group’s coefficient is a zero
vector. If a group’s coefficients are a nonzero vector, then
the feature-level inner-loop revises each parameter within the
vector. The sparse group lasso repeats the two loops until the
parameters converge. A detailed solution to the problem is
shown in Appendix A.

4 Generating Defense Rules

After extracting the important features that the DL-NIDS uses
to make a specific decision, XNIDS generates defense rules
based on these features. A detailed example of how XNIDS
generates defense rules is shown in Fig. 2.

XNIDS addresses Ch3 by (1) defining the defense rule
scope to confine where a rule should apply; (2) analyzing
explanations to determine the rule scope; and (3) considering
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Figure 2: An example illustrates how XNIDS generates defense rules. The key idea is to ① determine the defense rule scope
by analyzing explanation results, ② modify the operation concerning block strategy, and ③ generate unified defense rules by
creating a corresponding entity with values from the important features. Finally, XNIDS automatically translates the unified
defense rules into actionable defense rules (e.g., OpenFlow rules and iptables rules).

the security constraints to improve the adaptability of the de-
fense rules. XNIDS also addresses Ch4 by defining a unified
defense rule representation to abstract common entities and
operations of rules in different defense tools.

4.1 Defense Rule Scope
To balance precision and generalization, we introduce the
defense rule scope to confine where a rule should apply to.
The precision metric requires that defense rules only affect the
malicious traffic while leaving the benign traffic intact. The
generalization metric requires that the defense rules should
alert all the malicious traffic involved in an attack. To this
end, we first introduce the definition of defense rule scope.
We then introduce how to determine defense rule scopes by
analyzing explanations.
Defining Rule Scopes. The scope of a defense rule can be de-
fined at three levels: (1) Per-flow Scope. The per-flow defense
rule can only influence the network packets from the specific
flow. For example, a defense rule used to terminate a TCP
connection is considered a per-flow defense rule. (2) Per-host
Scope. The per-host defense rule can block multiple flows
from the same host. For example, a defense rule used to block
a bot is considered a per-host defense rule. (3) Multi-hosts
Scope. The multi-hosts defense rule can block multiple flows
from multiple hosts. For example, a defense rule used to block
SYN requests from a set of hosts (e.g., botnet) is considered a
multi-hosts defense rule.
Analyzing Explanation Results. We determine the proper
scope of a defense rule by analyzing the corresponding ex-
planations. As shown in Table 2, we define the statistical
information as S, which contains five fields: IP_pool, IP_n,
MAC_n, Port_n, and Protocol_n. Statistical information is
critical for generating practical defense rules. If it is unavail-
able, XNIDS doesn’t generate defense rules.

Table 2: Details of the Statistical Information
Field Description
IP_pool The IPs involved in inputs
IP_n The largest number of packets from the same IP
MAC_n The largest number of packets from the same MAC
Port_n The largest number of packets from the same Port
Protocol_n The largest number of packets from the same Protocol

We decide the per-host and the multi-host scopes by check-
ing which field in the statistical information (S) has the great-
est value. For example, if Protocol_n or Port_n has the
greatest value, it means the anomaly traffic belongs to the

same protocol but not from a single host. In other words, mul-
tiple hosts are likely involved in this attack. Therefore, the
defense rule should have a multi-hosts scope. Otherwise, if
the anomaly traffic comes from the same host, the correspond-
ing defense rule should have a per-host or per-flow scope. In
such a situation, if the important features contain multiple
protocols or ports, which means the host uses multiple pro-
tocols to launch the attack, the defense rule has a per-host
scope, or else the defense rule has a per-flow scope.

4.2 Security Constraint
The network environment often varies from site to site, and
network operators tend to have vague security requirements
for their network environments. As a result, a defense rule
that works fine on one site may be totally unusable on another
site. In response, it is important to adjust the defense rules
according to security constraints dynamically. To make the
defense rule adaptable to different network environments,
we introduce security constraints that are configurable for
network operators. We design two mechanisms, whitelist
and block strategy, to ensure network usability and maintain
appropriate block rates, respectively.
Whitelist. Network traffic from whitelisted critical services
will not be affected by any other defense rules.
Block Strategy. This mechanism is the interactive channel
between network operators and XNIDS. Network operators
can choose a proper block strategy for the unified defense
rule generation procedure based on their requirements and
knowledge. We further define three primary options: (1) pas-
sive block. XNIDS only generates defense rules that block
malicious flows. The goal of this strategy is to minimize the
influence of defense rules; (2) assertive block. Network oper-
ators tend to trust the corresponding DL-NIDS and the rules
generated by XNIDS; and (3) aggressive block. XNIDS tends
to block malicious activities by blocking the hosts directly.
The goal of this strategy is to quickly eliminate malicious
hosts from the network environment.

4.3 Unified Defense Rule
To support various defense tools that use different rule syntax,
we introduce a unified defense rule representation, which
serves as the bridge between the explanations and actionable
defense rules.



Each unified defense rule comprises four primary com-
ponents: ⟨entity, action, priority, timeout⟩, which
describes an action to perform on a subset of the network
traffic based on a set of network attributes [3]. An entity
is a target (e.g., a connection), where the defense action is
applied. An action is the specific defense operation to per-
form on all of the entity’s network traffic. The timeout field
is dedicated to controlling the valid time of a defense rule. If
a network traffic instance matches multiple unified defense
rules, only the highest-priority rule is applied. In this sce-
nario, the priority component, which is by default decided
by an incremental order, can explicitly specify the operation
order to resolve the potential conflicts from a set of unified
defense rules. The syntax of unified rule representation is
shown in Appendix B.

Entity. The unified defense rule can define a wide variety of
entities: network flows, connections, IP addresses, network
prefixes, and layer-2 MAC addresses. The unified rule speci-
fies those entities through the 8-tuples, with the support for
wildcards as tuple elements.

Action. The unified defense rule uses a list of primitive
actions to specify how to operate the corresponding network
traffic. The intuitive actions are Drop and Allow, which are
used to enforce explicit access control upon packets from
matched entities. Modify aims to change attributes (e.g.,
dest IP) of packets from a specific entity. Whitelist is a
preventive method to leave an entity unaffected by any other
defense rules. This serves as a preventive measure to ensure
the usability of the targeted network.

Generating Unified Defense Rule. To generate defense
rules, we need to create the entity by filling the correspond-
ing fields with the matched values from the important features
with respect to the defense rule scope and security constraints.

To relate the defense rule scope with the defense action, we
define two basic operations: drop_flow and drop_host. For
per-flow rules, we block malicious flows with the drop_flow
operation. For per-host rules, we block malicious hosts with
the drop_host operation. For multi-host rules, we block
malicious flows with the drop_flow operation recursively.

To corporate with different block strategies, we modify the
operations, respectively. For the passive block, we modify the
drop_host operation to the drop_flow operation. For the
aggressive block, we modify the drop_flow operation to the
drop_host operation. While for the assertive block, we keep
the operations unchanged.

Finally, we can create an entity based on the operation.
For example, when generating a multi-host rule with
drop_flow operation, we need to create the flow entity
recursively. To prevent rule conflicts, we set the priority
as an incremental number. The timeout parameter is config-
urable concerning different deploy environments.

5 Implementation and Experiment Setup

XNIDS Implementation. There are three groups of hyper-
parameters that are configurable in XNIDS. For approximat-
ing the history inputs, in step 1, we set the search termination
condition δ = 1e− 2, and the update times to 10. For sam-
pling around history inputs, we set the decay function to
Gaussian. For capturing feature dependencies, we follow the
group strategies of the target DL-NIDS and set the mixing
parameter α = 0.05 and the tuning parameter λ = 0.2 for
sparse group lasso. We implement XNIDS with the Python
package asgl [45] and use grid search to tune the parameters
to improve the performance and test the sensitivity of the
parameters. We conduct our experiments on an HPC cluster
provided by our university. The hardware we employ has four
Intel E5-2630 v3 8-core CPUs at 2.4 GHz and two 10 GB
network interface cards.
Target DL-NIDS. We use four state-of-the-art DL-NIDS
as target systems: Kitsune [46] with its published dataset;
ODDS [33] with the CIC-DoS 2017 dataset [20, 35]; and
both RNN-IDS [82] and AE-IDS [64] with the NSL-KDD
dataset [49]. For the strategy to divide training and testing
data, we follow the original setting in those papers.
Comparison Baselines. We compare XNIDS with five state-
of-the-art explanation methods: LIME, SHAP, LEMNA, IG,
and LRP. The details are shown in Appendix C.2.
Actionable Rule Generation. XNIDS can translate unified
defense rules into concrete defense rules that are then de-
ployed to different defense tools through the following steps.
First, an actionable defense rule template is created based on
the specific syntax of the object defense tool. Then, the related
fields in the actionable defense rule template are filled with
the appropriate values from the unified defense rules. Finally,
the generated defense rules can be deployed automatically or
manually to corresponding defense tools.

6 Evaluation

We first evaluate the explanation component of XNIDS in
terms of fidelity, sparsity, completeness, and stability consid-
ering the general criteria used by [27,55] and security-related
criteria introduced in [79]. We then evaluate the defense rule
generation of XNIDS regarding practicability, accuracy, and
efficiency. We also showcase how XNIDS can help under-
stand DL-NIDS behaviors, troubleshoot detection errors, and
facilitate active intrusion response.

6.1 Evaluation of Explanation
In the following experiments, we first scale the importance
score vector β to the range [0,1]. We then rank the features
based on the importance scores. A larger importance score βi
demonstrates a high relevance of feature xi.



6.1.1 Fidelity
This experiment evaluates how faithful the explanation
method captures the important features that contribute
to a specific detection result. We adopt the Descrip-
tive Accuracy (DA), which is defined as DAk(x, f ) =
f (x|modi f y(k)) [79], to evaluate the fidelity of explanation
methods regarding DL-NIDS. We consider two scenarios
for modi f y(k): (1) for the anomaly samples, modi f y(k) nul-
lifies k important features to zero as described in [79]; and
(2) for the benign samples, we find it insufficient to evaluate
the fidelity of explanation methods against benign samples
using the same operation. This finding is actually consistent
with a claim in [79] “setting benign features to zero usually
does not impact the prediction”. To effectively evaluate the
descriptive accuracy for benign samples, we follow the fi-
delity test approach proposed in [27] and slightly change the
metric from [79] by replacing the top-k features of the benign
sample with corresponding features from the nearest anomaly
sample. We find if explanation methods can accurately se-
lect the benign features of benign samples, replacing those
features with the corresponding anomalous features likely
leads to misclassification. We then feed those samples to the
DL-NIDS and calculate the Average Descriptive Accuracy
(ADA) on the whole dataset. We expect a significant decrease
in ADA from the fidelity test if the selected important features
are relevant to the detection result.

0 2 4 6 8 100

50

100

AD
A(

%
)

Kitsune

0 2 4 6 8 100

50

100
ODDS

0 2 4 6 8 10
Modified features

0

50

100

AD
A(

%
)

RNN-IDS

0 2 4 6 8 10
Modified features

0

50

100
AE-IDS

xNIDS
LEMNA
LIME
SHAP
IG
LRP

Figure 3: A steep decline in ADA means a good explanation.

Table 3: Area under the ADA curves from Fig 3.
System Kitsune ODDS RNN-IDS AE-IDS
LIME 0.509 0.531 0.770 0.521
SHAP 0.643 0.578 0.593 0.593
LEMNA 0.830 0.856 0.525 0.748
IG 0.608 0.618 0.690 0.623
LRP 0.409 0.427 0.507 0.438
xNIDS 0.316 0.325 0.430 0.331

As shown in Fig. 3, XNIDS has the steepest ADA de-
crease in the fidelity test compared with baseline methods.
This considerable decrease confirms that the features selected
by XNIDS are highly relevant to the detection results. We
then use Table 3 to summarize the area under curve for the
ADA curves from Figure 3. We observe that XNIDS outper-
forms the baseline methods regarding the AUC. Intuitively,
when selecting relevant features, XNIDS captures the feature
dependencies via sparse group lasso while baseline meth-
ods ignore them. In summary, this experiment confirms that
XNIDS can generate more faithful explanation results regard-
ing selecting important features.

Table 4: Comparison of setting benign features to zero and
replacing them with anomalous features.

System Dataset Setting to zero Replacement
Kitsune Kitsune 0.084 0.239
ODDS CIC-DoS2017 0.028 0.218
RNN-IDS NSL-KDD 0.071 0.279
AE-IDS NSL-KDD 0.059 0.281

To justify our adaptation of the DA for evaluating the fi-
delity of explanation methods against benign samples, we
compare the anomalous rate of the two operations: 1) setting
benign features to zero; and 2) replacing benign features with
anomalous features. As shown in Table 4, we observe that the
highest anomalous rate by setting benign features to zero is
around 0.084, while the lowest anomalous rate for replacing
the benign features with anomalous features is 0.218. On
average, by replacing benign features with anomalous ones,
we can significantly improve the anomalous rate by a factor
of at least four on all datasets.

6.1.2 Sparsity

To further evaluate the explanation results, we measure the
sparsity of the explanation. The desired explanation method
should select a limited number of features as explanation
results since that would be more convenient for network op-
erators to conduct intrusion analysis and defense. To evalu-
ate sparsity, we follow the Mass Around Zero (MAZ) cri-
teria introduced in [79]. Since the important scores β =
(βi, ...βd̄)

T are scaled to the range [0,1], we first fit β to a
half-normalized histogram h, we then calculate the MAZ by
MAZ(β) =

∫ 1
0 h(x)dx for β ∈ [0,1]

We present the MAZ curves in Fig. 4. We also calculate
the Area Under Curve (AUC) and show the information in
Table 5. We expect a steep slope near zero from the MAZ
curve and a large AUC, if the explanation method can assign
zeros to most of the features and achieve sparse explanations.
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Figure 4: Sparsity of explanation methods. A MAZ distribu-
tion peaking around 0 represents a better explanation.

Table 5: Area under the MAZ curves from Fig 4.
System Kitsune ODDS RNN-IDS AE-IDS
LIME 0.650 0.762 0.745 0.667
SHAP 0.685 0.647 0.680 0.760
LEMNA 0.542 0.599 0.569 0.604
IG 0.577 0.713 0.637 0.632
LRP 0.605 0.680 0.655 0.708
xNIDS 0.774 0.814 0.775 0.806



As shown in Fig 4, we observe that XNIDS has the steepest
slopes, which means XNIDS assigns the majority of impor-
tant scores close to zero. Similarly, we observe that XNIDS
has the largest AUC in Table 5, which confirms that XNIDS
outperforms the baseline methods regarding the sparsity cri-
teria. Especially, LEMNA has the poorest performance for
the sparsity test. The reason behind that is LEMNA assumes
that adjacent features have similar contributions to the de-
tection results, which is inapplicable to the DL-NIDS. In
contrast, XNIDS achieves sparse effects on both group-level
and feature-level by adopting sparse group lasso techniques
and is suitable for explaining DL-NIDS.

6.1.3 Completeness

An explanation is complete if it can create proper results
for all possible input samples. We first follow the definition
from Warnecke et al. [79] to evaluate the completeness of
explanation regarding single input xt . We then extend the
completeness criteria to evaluate the completeness of explana-
tion regarding the history inputs (xt−1, ...,xt−k). Warnecke et
al. [79] argue that it is essential to synthesize a fraction (5%)
of samples detected as the opposite class to achieve complete-
ness. We denote benign samples as xb = (xb

1, ...,x
b
d)

T and
malicious samples as xm = (xm

1 , ...,x
m
d )

T . They also argue that
it is easy to synthesize benign samples around malicious ones.
However, it is challenging to synthesize malicious samples
around benign ones by simply setting benign features to zero
(xb

i = 0), which usually cannot flip the detection results. To
address this issue, when sampling around benign, instead of
always setting features to zero, we replace a fraction of them
with malicious features (xb

i = xm
i ). Our experiments show that

by replacing benign features with those malicious features,
we can efficiently satisfy the 5% requirement.

When evaluating the completeness considering history in-
puts, we observe that, in some cases, the current input xt
contains all the information needed for the explanation. For
example, packets look similar in a UDP stream. Thus, it is
possible to get non-degenerated explanations from the current
input. However, we are likely to get degenerated explanations
for other cases if we ignore the history inputs. For example,
there are various protocols involved in the whole process of
OS scan, but the current input only contains one protocol.
Consequently, we may be unable to mark other protocols as
relevant. We also observe that creating non-degenerated ex-
planations for anomaly samples is more critical. From the
network operator’s perspective, we are only required to pre-
vent the anomalies while leaving the benign intact. Intuitively,
we measure the completeness regarding history inputs by cal-
culating the percentage of anomaly samples, which contain
enough information for non-degenerated explanations.

Table 6: Samples remaining regarding the history inputs.
Kitsune ODDS RNN-IDS and AE-IDS

Anomaly 0.739 0.638 0.696

We can observe that at least 26% of the anomaly samples
don’t contain enough information for non-degenerated expla-
nations. Since the baseline methods ignore history inputs,
they are likely to generate degenerated explanation results for
attacks that are involved in a various number of inputs. In con-
trast, XNIDS can dynamically approximate the history inputs
and outperform existing methods regarding completeness.

6.1.4 Stability
We further evaluate the stability of the explanation results
following the definition in [79]. From a network operator’s
perspective, the explanation results should be stable. Hence,
the desired explanation method should generate similar results
for the same samples among multiple tests. Since IG and
LRP are deterministic, the explanation results from IG and
LRP for the same samples don’t vary among multiple tests.
Consequently, we focus on the stability of perturbation-based
methods LIME, SHAP, LEMNA, and XNIDS.

To examine the stability of explanations, we calculate the
intersection size of the top K features of the explanation re-
sults for the same input regarding different tests. We denote
the explanation result of the first test as β1 = (β1

i , ...β
1
d̄)

T , and
for nth test as βn = (βn

i , ...β
n
d̄)

T . top(βn) denotes the top K
features of βn. Then the stability is measured as stability =
1
K ||{top(β1)∩ top(β2)...∩ top(βn)}||1. A stable explanation
method should have a stability score close to 1 [79], which
means ||top(βi)∩ top(β j)||1 is close to K.

Table 7: Average stability scores of explanation methods.
System Kitsune ODDS RNN-IDS AE-IDS
LIME 0.424 0.640 0.442 0.470
SHAP 0.563 0.473 0.482 0.543
LEMNA 0.473 0.520 0.357 0.371
xNIDS 0.850 0.830 0.914 0.807

We can observe that the lowest score for XNIDS is 0.807,
which is still higher than the highest score (0.640) of LEMNA,
SHAP, and LIME. Intuitively, XNIDS can generate more
stable explanations by: (1) utilizing the feature groups to
synthesize samples more reliably; and (2) concentrating the
samples by assigning higher probabilities to the latest inputs.

6.1.5 Sensitivity and Tuning of Hyper-Parameters
We evaluate how the performance of XNIDS would change
if the parameters are set differently. We test a large set of pa-
rameter configurations and summarize key conclusions here.

For parameter tuning, we use grid search to find the ideal
set. We set ranges for each parameter following the descrip-
tions in [21] [31] [66]: δ = [1e− 4,1e− 1], U = [1,100],
α = [1e−2,1], and λ = [1e−2,1]. We tune these parameters
on the training dataset and fix them on the testing dataset.
For approximating the history inputs, in step 1, if δ is too
small and the update times (U) are too large, XNIDS will
become insufficient since the searching space will increase
exponentially. By setting the update times to 10, we can ef-
ficiently approximate the history inputs (up to 1024) in the



experiments. We apply the host and protocol filters to Kit-
sune and ODDS while skipping step 2 for RNN-IDS and
AE-IDS since the host or protocol information is unavailable
in the NSL-KDD dataset. For sampling around history inputs,
we find Gaussian works well for all the experiments. For
capturing feature dependencies, we follow the same group
strategies of the target DL-NIDS, which improve the perfor-
mance of XNIDS. For sparse group lasso, the larger we set
λ, the sparser the explanation will be. We find that λ = 0.2
achieves the best overall performance in our experiments. Ad-
ditionally, in case of an increasing number of features and the
unavailableness of grouping information, the sparse group
lasso component of XNIDS will be reduced to lasso.

6.1.6 Summary of Explanation Evaluation

Table 8: Overall Comparison of explanation methods.
means strong, means medium, while means weak.

Criteria LIME SHAP LEMNA IG LRP XNIDS
Fidelity
Sparsity
Completeness
Stability
Rule Generation / / / / /

We summarize the performance of XNIDS and the baseline
methods over the target DL-NIDS and present an overview
of the evaluation of explanation in Table 8. We rank each
method following three scores for each evaluation criterion.
We observe that DL-NIDS achieves a higher ranking than
LIME, SHAP, and LEMNA in all the criteria. For IG and
LRP, XNIDS has a higher ranking regarding fidelity, sparsity,
and completeness and has comparable performance regarding
stability. Overall, XNIDS has the best performance since it
considers the history inputs and feature dependencies.

6.2 Evaluation of Rule Generation
We evaluate the practicability, accuracy, and efficiency of the
rule generation mechanism in XNIDS regarding supported
defense tools, covered attacks, and latency. We use both the
Kitsune dataset and CIC-DoS2017 dataset in this experiment,
since the NSL-KDD dataset doesn’t have enough traffic infor-
mation for rule generation.

6.2.1 Supported Defense Tools

As discussed in §4.3, unlike existing work that focuses on
specific defense tools, the unified defense rule can support
various network defense tools. This experiment presents the
different defense tools whose native rules are accommodated
by the unified defense rules.

As shown in Table 9, the unified defense rule is totally trans-
ferable to OpenFlow, which means we can translate all the
generated unified defense rules into OpenFlow rules. Mean-
while, the unified defense rule is partially transferable to ipta-
bles, Pfsense, and Squid. We cannot set customized priority
or timeout when using iptables, Pfsense, and Squid.

Table 9: Summary of four defense tools that are supported by
unified defense rule. means totally transferable, while
means partially transferable.

Defense Tool Entity Action Priority Timeout
OpenFlow [50]
iptables [32]
Pfsense [53]
Squid [72]

6.2.2 Covered Attacks
To demonstrate that the unified defense rule can accurately de-
fend against a wide variety of network attacks, We show three
representative examples regarding the defense rule scopes.
Per-flow. We use SYN DoS as an example to demonstrate
how a unified defense rule can block malicious flows. A
simple approach is to block the unidirectional flow from the
malicious host. To minimize the effect, the unified defense
rule specifies the TCP.flag filed as SYN.

R1:<entity(src_ip = 157.240.1.9, dst_ip =
157.240.1.3, TCP, TCP_flags=SYN),
actions = drop, priority = 1, timeout = 6000>

Per-host. We use OS scan as an example to demonstrate
how the unified defense rule can block a malicious host. The
unified defense rule will block the infected device by IP or
MAC address as long as possible.

R2:<entity(src_ip = 157.240.1.12,
src_mac = dc:a9:04:bc:7e:42 )
action = drop, priority = 3, timeout = MAX>

Multiple-hosts. We use Simple Service Discovery Proto-
col (SSDP) amplification as an example to demonstrate how
the unified defense rule can block malicious flows from multi-
ple hosts. The unified defense rule will block all the network
traffic with the destination port as 1900, while allowing the
benign hosts to use this service. By default, the multiple-hosts
scope rule blocks the SSDP flows from the malicious hosts
recursively. However, an alternative way is to shut down the
SSDP port, while allowing benign hosts to use this service.

R3:<entity(src_ip=*, dst_port = 1900 )
action = drop, priority = 4, timeout = MAX>
R4:<entity(src_ip=157.240.1.13, dst_port = 1900 )
action = allow, priority = 5, timeout = MAX>

6.2.3 Latency

This experiment evaluates the latency of explaining detection
results and actionable rule generation, respectively. When
generating defense rules, one of the concerns is how fast it
takes effect. Therefore, we should reduce the latency of the
explanation and rules generation as much as possible.
Explanation Latency. In Fig. 5, over 90% of the explanation
latency is under 600ms. This latency is determined by the
speed of explanation methods and the target DL-NIDS.
Rule Generation Latency. In Fig. 5, the rule generation
time varies for different defense tools. The largest latency
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Figure 5: Left figure shows the latency of explanation. The
right figure presents the rule generation time (ms) regarding
defense tools. Recon, MITM, and HTTP represent Recon-
naissance, Man in the Middle, and HTTP Flood, respectively.

(35ms) is the OpenFlow rule of the Reconnaissance attack.
The average latency is about 25ms.

6.2.4 Comparison with Existing Work

To better demonstrate the benefits of the rule generation com-
ponent of XNIDS, we provide a comparison of FIRMA [54]
and XNIDS in Table 10.

Table 10: Comparison of FIRMA and XNIDS.
Criteria FIRMA XNIDS
Supported Tools Two [69, 74] Four Defense Tools
Covered Attacks One scope Three scopes
Latency NA Varies

As shown in Table 10, XNIDS can support more defense
tools and generate defense rules with different scopes. In con-
trast, FIRMA only supports two defense tools and generates
per-host rules. Moreover, FIRMA requires offline analysis
for signature generations, while XNIDS can generate rules di-
rectly from the explanation of detection results of DL-NIDS.

6.3 Troubleshooting and Active Responses
This experiment demonstrates how XNIDS can help network
operators understand DL-NIDS behaviors, troubleshoot de-
tection errors, and enable active responses with case studies.

6.3.1 Understanding DL-NIDS Behaviors
We present two case studies to show how XNIDS helps net-
work operators understand the detection results of DL-NIDS.
Reasons for Anomalies. We use OS to scan and HTTP flood
as examples to demonstrate how DL-NIDS detects anomalies.

Explanations: xNIDS identifies LLMNR, NBNS, and SSDP
as the important features.

Network operators’ understanding: this result matches the
well-known description of OS scan attacks, namely the at-
tacker exploits various protocols to scan the network to look
for possible vulnerabilities.

Explanations: xNIDS identifies HTTP Referer as the most
important feature.

Network operators’ understanding: this result matches the
procedure of the HTTP flood attack in this experiment. The
attacker uses Botnet to send tons of HTTP GET requests via
the same hyperlink (Referer) to overwhelm the victim server.
Reasons for FN and FP. By analyzing the explanation results,
we identify two reasons for false negatives: (1) Inappropriate
Parameter e.g., threshold; and (2) Inadequate Design e.g.,
focusing on header information. We also identify three types
of false positives: (1) Infected Benign, benign traffic from
infected hosts are misdetected as anomalies; (2) Disturbed Be-
nign, disturbed traffic from the benign hosts are misdetected
as anomalies; and (3) Unseen Benign, unseen benign traffic is
misdetected as anomalies, which is the most common error
committed by DL-NIDS.

6.3.2 Troubleshooting Detection Errors

By analyzing the detection logic behind the DL-NIDS, we
now present approaches to patching the DL-NIDS with re-
spect to reducing detection errors.

To patch infected benign, we utilize the defense rule gen-
eration procedure to minimize the cost of detection errors.
For example, we use the passive block strategy to generate
per-flow scope rules to block the malicious TCP.SYN traffic
precisely, while leaving the benign UDP flows unchanged.
The advantage of this approach is that we don’t need to re-
train the DL-NIDS while reducing the errors at run-time. To

Table 11: Detection errors before and after troubleshooting.
False positive denotes the number of benign samples that are
detected as anomalies. Blocked denotes the number of benign
samples that are dropped by defense rules.

Error
Type

Before After Reducing
RateFP Blocked FP Blocked

Infected Benign 137583 136425 137583 0 100%
Disturbed Benign 45744 44371 16012 15369 65.36%
Unseen Benign 35676 35562 1192 1141 96.79%

patch disturbed benign error, we need to disturb the traffic
intentionally to make the DL-NIDS more robust. For unseen
Benign, we can reduce the FPR after retraining the DL-NIDS
with the augmented data. As shown in Table 11, for infected
benign error, XNIDS can reduce detection errors by 100%,
to be specific, XNIDS only blocks the SYN DoS flows while
it leaves the benign UDP flows unaffected. For disturbed be-
nign and unseen benign errors, XNIDS can reduce detection
errors by 65.36% and 96.79%, respectively. We observe that
disturbed benign is the most challenging FP to reduce, which
is consistent with the intuitive knowledge, considering that it
is hard to mimic an unstable network environment.

6.3.3 Active Responses

We showcase the block rates of XNIDS in three scenarios
and compare it with the baseline method FIRMA.

In Fig. 6, before troubleshooting, the aggressive
block (Fig. 6 (c)) has the highest block rate (avg. 97.34%) for
malicious traffic, while many benign traffic also gets blocked.
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Figure 6: Traffic block rates for XNIDS regarding different
scenarios and FIRMA before troubleshooting.
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Figure 7: Traffic block rates for XNIDS after troubleshooting.

Since the infected hosts may send benign and malicious traffic
at the same time. Thus, if we block those hosts, we will block
the benign traffic. Meanwhile, the passive block (Fig. 6 (a))
has the lowest block rate for benign (avg. 0.32%) and mali-
cious traffic (avg. 74.28%) since we only block the malicious
flows. If the infected hosts launch attacks with other protocols,
they may bypass this defense rule. As a trade-off, the assertive
block (Fig. 6 (b)) has a high block rate (avg. 95.72%) for ma-
licious traffic and a high pass rate (avg. 98.54%) for benign
traffic. We measure the block rate within an observation win-
dow when the defense rules are active. When defense rules
expire, the block rate will be zero.

As shown in Fig. 7, after troubleshooting, the block rate
for benign traffic is significantly reduced. Specifically, the
benign traffic block rate for the passive scenario (Fig. 7 (a))
and assertive scenario (Fig. 7 (b)) is less than 0.04%. For
the aggressive scenario (Fig. 7 (c)), the highest block rate for
benign traffic is 0.2%, which is still relatively high. Thus, we
would suggest not to use the aggressive strategy unless there
are intense network attacks.

When comparing with XNIDS, we observe that FIRMA
has a similar performance with the aggressive block before
troubleshooting, which is the worst case of XNIDS, as shown
in Fig. 6 (d). This result matches the intuition that we may
increase the false positive rate by simply blocking the hosts,
which may inappropriately block the benign traffic or, worse,
block benign hosts. This experiment also proves that it is
costly and dangerous to facilitate response directly based on
the detection results. In contrast, XNIDS can generate more
accurate defense rules by considering the rule scopes and
security constraints. To further improve the effectiveness of
active intrusion responses, we use the whitelist mechanism to
avoid altering the critical services. We can explain the benign
samples to generate allow rules to avoid blocking the benign.

7 Discussion

Robustness. Recently, existing works [12, 59] demonstrate
that deep learning models and their coupled explanation mod-
els are vulnerable to the adversarial attack [2,9,39,86], which
is defined as {∃ x̂ : ||x̂−x|| ≤ σ, s.t. f (x̂)f (x)≤ 0}.

We evaluate the robustness of XNIDS based on existing
literature. We create three types of practical traffic-based
adversarial examples [29], 200 samples for each type and a
total of 600, to test whether XNIDS can resist adversarial
attacks. We assume that the attacker has limited knowledge
about the targeted system and can only estimate and design a
surrogate model based on domain knowledge. Our prelimi-
nary experiment shows that the evasion rates 2 for those three
types of traffic-based adversarial samples are 33%, 49%, and
53%, respectively. Thus, XNIDS is relatively robust to those
adversarial attacks by considering the history inputs.

To improve the robustness of XNIDS, we briefly discuss
potential solutions based on existing literature since little
is known about how to protect explanation methods against
adversarial attacks. Zhang et al. [86] argue that to mitigate
those adversarial attacks, we need to improve the robust-
ness of both target deep learning models and their coupled
explanation models. We would like to (1) improve the ro-
bustness of DL-NIDS by applying Generative Adversarial
Networks (GAN) [26] to create a large dataset [59] for adver-
sarial training [57, 87] considering the trade-off [84] between
accuracy and robustness, and (2) improve the robustness of
XNIDS with an ensemble of interpreters [86].
Adaptability. XNIDS addresses the adaptability problem
by merging the security constraints configured by the net-
work administrators into the defense rule generation process.
However, fully autonomous systems that can self-adjust to
dynamic environments are more desirable. To further address
such a problem, we plan to adopt the concept of reinforce-
ment learning (RL) [48, 75] in XNIDS to make it adaptive to
different network environments.
Global Explanation. XNIDS and state-of-the-art explana-
tion methods [18, 27, 55] can locally explain the detection
results of DL-NIDS by generating an importance score vector,
which is still relatively low level. At the same time, there is
an additional demand for human-interpretable explanations
that have more meaningful high-level features. We plan to
investigate the concept of global model interpretability on a
modular level [15, 38]. With the global explanation, we can
investigate the high-level correlations of features and check
whether the DL-NIDS are misled by the learned artifacts [4].

8 Other Related Work
Since we have discussed most of the related works in Sec-
tion §2, we briefly discuss other related works here.

2The evasion rate represents how much the crafted attacks can bypass the
target DL-NIDS [29].



Explainable Machine Learning. CADE [81] introduces a
distance-based explanation method for security applications.
Unfortunately, while it works well for malware detection, it
suffers from an extremely low fidelity (1.41%) when apply-
ing to DL-NIDS. DeepAID [28] is a whitebox explanation
method based on back-propagation, which focuses on neu-
ral network components of DL-NIDS and ignores both the
feature extractor (FE) and the feature mapper (FM) of Kit-
sune. Moreover, by assuming each feature is independent,
DeepAID is insufficient to capture the feature dependencies
of structured data when explaining DL-NIDS.
Active Intrusion Responses. Researchers attempt to use
signature-based or specification-based NIDS [52, 69] to en-
able active intrusion responses. For example, Amann et al. [3]
introduced a framework, which enables active intrusion re-
sponses on top of Bro [52], and assesses its functionality
through OpenFlow [44]. Xing et al. [80] designed a prototype
to analyze network traffic with Snort [69] and performed pre-
vention by utilizing OpenFlow. Zhang et al. [85] proposed a
system to mitigate DDoS attacks via programmable switches.
To the best of our knowledge, XNIDS is the first work towards
active intrusion responses by explaining DL-NIDS.

9 Conclusion

In this paper, we present XNIDS, a novel framework that
explains the detection results of DL-NIDS and generates ac-
tionable defense rules. XNIDS explains the detection results
of DL-NIDS by considering history inputs and feature de-
pendencies. Based on the explanation results, XNIDS can
also troubleshoot the detection errors and generate action-
able defense rules regarding defense rule scope and security
constraints. The evaluation results show that XNIDS can gen-
erate high-fidelity, sparse, complete, and stable explanation
results and actionable defense rules. Additionally, we show-
case how XNIDS can help understand DL-NIDS behaviors
and troubleshoot detection errors.
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Appendix A Details of Explanation Methods

As described in Section §3.4, we utilize sparse group lasso
(SGL) [21, 31, 66], where the objective function is the sum
of an empirical loss and the penalty to derive the explanation
results for DL-NIDS.

argmin
β

{
1

2n
||y−

Q

∑
q=1

Xqβ
T
q ||22︸ ︷︷ ︸

empirical loss

+ (1−α)λ
Q

∑
q=1

||βq||2 +αλ||β||1︸ ︷︷ ︸
penalty

}

(13)

As discussed in Section §2, to explain DL-NIDS, we need to
address the complicated feature dependencies of structured
data (Ch2). Unfortunately, IG, LRP, LIME, and SHAP are
insufficient to address Ch2 since they assume each feature is
independent. Moreover, LEMNA bonded with consecutive
dependency through the adjacent penalty ||β j −β j−1||1. In
contrast, our method can address Ch2 by applying feature
groups and selecting features among and within groups.

To minimize β, we need to solve the objective function in
Equ. (13), which is convex. As a result, the optimal solution
is characterized by subgradient equations. Simon et al. [66]
argue that SGL promotes the desired sparsity both on group
and feature levels by solving the subgradient equations.

1
n
XT

k (y−
Q

∑
q=1

Xqβ̂
T
q ) = (1−α)λu+αλv (14)

where Equ. (14) is the subgradient equation for kth group Xk.
u and v are the subgradients of ||β̂k||2 and ||β̂k||1 evaluated at
β̂k.

Friedman et al. [21] show that by utilizing block coordinate
descent (BCD), SGL can iteratively update the parameters
(β̂k) for each group in (Xk) until convergence. BCD consists
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of a group-level outer loop and a feature-level inner loop. The
group-level outer-loop cyclically iterates through the groups
and checks whether the group’s coefficients β̂k are a zero vec-
tor. If the kth group’s coefficients β̂k turn out to be a nonzero
vector, the feature-level inner-loop updates each parameter in
β̂k. BCD repeats the process until the whole parameter vector
converges.

β̂
new
k = (1− t(1−α)λ

||S(Mk, tαλ)||2
) + S(Xk, tαλ)

Mk = β̂k +
t
n
(XT

k r−k −XT
k Xkβ̂k)

r−k = y−
Q

∑
l ̸=k

Xqβ̂
T
q

(15)

Equ. (15) is the inner-loop, where t ≥ 0 is the step size and
r−k is the partial residual. S(·) is the coordinate-wise soft-
threshold operator. ith element of S is defined as S(m,γ)i =
sign(mi)(||mi||1 − γ)+. Coefficients of the kth group are itera-
tively updated until convergence.

||S(XT
k r−k ,αλ)||2 ≤

√
pk(1−α)λ (16)

Equ. (16) is the outer loop, which is used to check whether β̂k
is a zero vector or not. If Equ. (16) is satisfied, then Equ. (15)
is skipped. Otherwise, repeat Equ. (15) until the parameters
converge.

Appendix B Syntax of the Unified Rule

Notation: Integer n, Wildcard *

Entity entity ::=<IP, MAC, port, protocol, flag>
IP ::=<src_IP, dst_IP>
MAC ::=<src_MAC, dst_MAC>
port ::=<src_port, dst_port>
protocol::=tcp | udp | icmp | arp | http | *
flags ::=tcp.syn | tcp.ack |tcp.fin | *

Action action ::=drop | allow | modify | whitelist
Priority priority::=n
Timeout timeout ::=n
Unified Rule rule ::=<entity, action, priority, timeout>

Appendix C Details of Experiments Setup

Here we provide details about the experiments in Section §5
and §6.

Appendix C.1 Target DL-NIDS
Kitsune. Kitsune [46] is an autoencoder-based intrusion de-
tection system, which is composed of three major components.
(1) Feature Extractor (FE) is responsible for extracting n fea-
tures from the arriving packets to create a vector to describe
the packets and which channel it comes from. FE uses a total
of five-time windows, each creating 23 features, thus a total
of 115 features. Note that those features are not derived from

a single packet. In contrast, they represent the aggregation
information of a series of packets involved in those five-time
windows. (2) Feature Mapper is designed to divide the fea-
tures into a set of smaller groups. (3) Anomaly Detector (AD)
is responsible for detecting malicious activities. Kitsune has
one main parameter for the auto-encoders, m ∈ [1,10], which
is the maximum number of the features for any encoder of
KitNET’s ensemble [46]. Since m = 10 sometimes performs
better than m = 1, we set m = 10 according to the paper.
ODDS. The bot detector of ODDS [33] is a Long-Short-Term-
Memory (LSTM) based model. The input for the LSTM
based detector is a matrix (IP sequence) of 30×5 (dimension
= 150), which contains 30 HTTP Requests, each request has
5 features. The original dataset used in ODDS is collected by
collaborating with Radware. Due to privacy concerns, it is
not publicly available. As a result, we use the CIC-DoS2017
dataset to build the system. The total packets number of
CIC-DoS2017 is 6,393,767 with 562,669 HTTP request.
RNN-IDS. we follow [82] to build an RNN-NIDS based on a
widely used dataset NSL-KDD. The authors first used data
numericalization and normalization approaches to pre-process
the data and then feed them to the RNN model.
AE-IDS. we follow [64] to build an autoencoder-NIDS based
on the NSL-KDD dataset. To be specific, we test the AE-IDS
with the binary classification settings.
Table 12: Detection performance for the trained DL-NIDS

System Dataset Precision Recall FPR
Kitsune 0.9568 0.9972 0.001
ODDS CIC-DoS2017 0.9348 0.9465 0.0352
RNN-IDS NSL-KDD 0.9235 0.9723 0.0137
AE-IDS NSL-KDD 0.9785 0.9874 0.0215.

Appendix C.2 Explanation Methods
LIME. We set the number of the synthesized samples n= 500.
For πx(z), we choose cosine similarity. We set the number of
selected features of k-lasso as the dimension d of the inputs.
Finally, we employ sklearn.linear_model.Lasso with l1 prior
as the regularizer to solve the regression problem.
SHAP. Since we treat DL-NIDS as blackbox models, we use
KernelSHAP, a model agnostic method, to estimate SHAP
values for any model. For the implementation, we make use
of the open-source code provided by the authors [18].
LEMNA. Three hyper-parameters are configurable: the num-
ber of synthesized samples N, the number of mixture com-
ponents M, and the threshold of the fused lasso s. Ac-
cording to the original paper, LEMNA is not sensitive to
these hyper-parameters. In other words, changing the hyper-
parameters does not significantly influence the performance
of LEMNA [27]. Since the features are not independent in
our experiment, we set s2 = 1e−4, N = 500, and M = 6 ac-
cording to the paper. We implement the fused lasso regression
problem with Python Package cvxy [13].
IG and LRP. We use iNNvestigate [1] toolbox to implement
IG and LRP. We set ε = 1e−4 for LRP and N = 50 for IG.
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