
Performance Considerations of Network Functions
Virtualization using Containers

Jason Anderson
School of Computing

Clemson University

Clemson, South Carolina

jwa2@clemson.edu

Hongxin Hu
School of Computing

Clemson University

Clemson, South Carolina

hongxih@clemson.edu

Udit Agarwal
School of Computing

Clemson University

Clemson, South Carolina

uagarwa@clemson.edu

Craig Lowery
Dell Corporation

Round Rock, Texas

Craig.Lowery@software.dell.com

Hongda Li
School of Computing

Clemson University

Clemson, South Carolina

hongdal@clemson.edu

Amy Apon
School of Computing

Clemson University

Clemson, South Carolina

aapon@clemson.edu

Abstract—The network performance of virtual machines plays
a critical role in Network Functions Virtualization (NFV), and
several technologies have been developed to address hardware-
level virtualization shortcomings. Recent advances in operating
system level virtualization and deployment platforms such as
Docker have made containers an ideal candidate for high per-
formance application encapsulation and deployment. However,
Docker and other solutions typically use lower-performing net-
working mechanisms. In this paper, we explore the feasibility
of using technologies designed to accelerate virtual machine
networking with containers, in addition to quantifying the net-
work performance of container-based VNFs compared to the
state-of-the-art virtual machine solutions. Our results show that
containerized applications can provide lower latency and delay
variation, and can take advantage of high performance network-
ing technologies previously only used for hardware virtualization.

I. INTRODUCTION

In the past few years, Network Functions Virtualization
(NFV) has positioned itself as a paradigm shift in enterprise
networking. All of the benefits of virtualization - server consol-
idation, higher availability, and scalability [1] can be brought to
the world of network middleboxes [2]. Network functions such
as firewalls, routing, and intrusion detection systems, which are
typically implemented as specialized hardware appliances, can
instead be deployed as virtualized network functions (VNFs)
on cost efficient commercial off-the-shelf hardware.

While traditional virtual machines (VMs) have so far been
the target of NFV implementations, there are a number of
challenges that must be addressed as NFV evolves into a
mainstream technology:

1) Hardware virtualization incurs significant perfor-
mance and efficiency costs [3].

2) Heterogeneous packaging and virtualization plat-
forms may result in fragmented distribution and com-
plex orchestration.

3) VM images can be large, resulting in significant time
to deploy and migrate statefully between hosts.

4) Network I/O, which is of critical importance to NFV,
can also suffer in many configurations.

Operating system-level virtualization (i.e., containers) is
a relatively new technology which allows applications to
run as sandboxed user-space instances on the host machine
with isolation similar to hardware virtualization. Container
packaging and deployment platforms such as Docker1 simplify
using containers to run virtualized services by packaging appli-
cations with a customized view of their runtime environment.
Container ecosystems like Docker have the potential to address
some of the above challenges:

1) Since applications in containers run on the host OS
without hardware indirection, they can run more
efficiently than their VM-based counterparts [4] and
allow higher application density on a host [5].

2) Docker’s novel packaging can remove some of the
variability in hosting requirements that a VNF may
express. Projects like the Open Container Initiative2

aim to standardize container formats and make them
even more platform agnostic.

3) Containers do not require packaging the operating
system in their image, and as such generally con-
sume much less disk space than comparable VMs,
decreasing time to deploy and migrate. Live migra-
tion of stateful containers has been explored [6] and
implemented in real world systems like Flocker3.

Docker seems to be a natural fit for NFV. However, one
challenge that is not sufficiently addressed by containers is
network I/O. Containers are typically used to provide isolation
for services that communicate using one or more network
sockets bound to a port on the host. Traffic is handled by the
host’s network stack using a software switch such as the Linux
bridge, which can incur performance cost and variation. While
many services typically deployed in containers are not bounded

1http://www.docker.com
2http://www.opencontainers.org
3http://clusterhq.com/flocker

2016 International Conference on Computing, Networking and Communications, Internet Services and Applications

978-1-4673-8579-4/16/$31.00 ©2016 IEEE

by network performance, most use cases for NFV have strict
requirements for network throughput and delay [7] that can be
difficult to guarantee with traditional Linux networking.

Given the potential benefits in containers for VNFs, we
should better understand their shortcomings and devise ways
to overcome them, rather being dismissive of them. Full
hypervisor virtualization suffered from similar criticisms in its
infancy and research into these problems resulted in hardware
and software innovations that greatly improved performance
and security to the point that hypervisor virtualization is the
default choice of infrastructure for most applications. The
NFV concept validates the fact that hypervisor virtualization is
believed sufficient to the task and there is no known reason yet
that containers cannot advance in similar fashion to be suitable
for the task.

Our research is the first in a line of investigations to better
understand the real, rather than perceived networking issues
in operating system level virtualization. It is the goal of this
work to identify and quantify the factors that influence the
packet delay and throughput of container-based applications
and virtual machines, in the context of NFV service chains
where VNF instances may exist on the same or multiple
hosts on a network. We describe and report on controlled
experiments devised to isolate these factors, and finally identify
goals of future research in this area.

II. BACKGROUND AND TECHNOLOGY SELECTION

In traditional enterprise and telecommunications networks,
network services such as routing, intrusion detection systems,
and firewalls are typically performed by specialized hardware
appliances situated in the data plane. With NFV, these services
are instead implemented as software applications that run in
virtual environments on standardized general purpose com-
puting hardware. This gives huge benefits in flexibility and
scalability, at the cost of lower operating efficiency through
virtualization and the use of general purpose hardware. It also
opens up network services to management and orchestration
techniques that allow for unprecedented control, and removes
much of the complexity and specialized knowledge required
with traditional systems.

A. Virtualization

A traditional virtual machine, i.e. hardware-level or hy-
pervisor virtualization, is an abstraction of physical hardware
giving each VM a full server hardware stack including vir-
tualized network adapters, storage and CPU. Virtualizing the
entire hardware stack means that each VM needs a complete
operating system for instantiation.

Operating system (OS) level virtualization – also known
as jails or containers – is a method of isolating the view
of the operating system for an application. On a Linux host,
this is typically done using cgroups to limit resource usage,
along with namespaces to isolate the user’s view of process
trees, networking, and filesystems. Since a separate kernel does
not load for each user session, the overhead associated with
multiple operating systems is not experienced, as shown in
Fig. 1. A perfectly tuned container system can have as many as
four to six times the number of server application instances as

is possible using Xen or KVM on the same hardware [8]. OS-
level virtualization has been used successfully in applications
where maximum resource utilization efficiency is required,
such as Linux-VServer in PlanetLab [9]. Among other benefits
of containers, two of the most relevant in the context of NFV
are the lower overhead and shorter software stack between the
Network Interface Controller (NIC) and the application.

Fig. 1. Software layers of container-based (OS-level) and hypervisor-based
(hardware-level) virtualization.

1) Docker: We selected Docker as a representative OS-
level virtualization platform for a number of reasons. First,
it allows us to build layered container images to ensure that
the host OS meets the dependency requirements of the VNF,
as well as distribute these images though public or private
repositories. Second, while our configuration uses the default
libcontainer library for access to the host’s virtualization fea-
tures, Docker is capable of using other libraries such as libvirt
and LXC should they be more suitable to the use case. These
benefits and others place Docker as a container platform to be
particularly well suited for use in an NFV context. OpenStack4,
a fundamental tool in NFV deployments and the foundation of
the OPNFV project5, already supports Docker as a hypervisor
driver6. Other software, such as Shipyard7, can control clouds
of hosts running Docker, making it even more suitable as a
target for cloud-based NFV.

2) Xen: We use Xen [1] to represent hypervisor virtu-
alization. Xen is considered one of the most mature and
efficient virtualization solutions [10], and has been well studied
in the context of network performance [11]. Second, Xen
is supported by OpenStack and identified as one of the
primary infrastructure targets for OPNFV. Finally, Xen VM-
based VNFs have been explored in previous work [7], which
validates it as a comparable technology.

B. Networking Technologies

Several networking technologies were identified as both
commonly available on modern enterprise software and hard-
ware systems, and potentially beneficial over the default sub-
systems available for routing network traffic between VMs or

4http://www.openstack.org
5http://www.opnfv.org
6http://wiki.openstack.org/wiki/Docker
7http://shipyard-project.com

containers on Linux. We classify these technologies as either
a software switch, which is a software construct independent
of a physical network device, or device virtualization, which
is applied to a physical interface.

1) Network Device Virtualization: Macvlan allows the ab-
straction of a single network interface into multiple network
interfaces with different hardware addresses assigned to them.
While operating in bridge mode, macvlan acts as a lightweight
layer 2 software switch, using the frame’s MAC address for
distribution [12].

Single Root I/O Virtualization (SR-IOV) is a specification
that allows a physical PCIe device to present itself to the OS as
multiple separate PCIe devices called virtual functions(VFs),
each with dedicated queues for transmitting and receiving
packets. In the virtualized environment each virtual machine
is directly assigned a VF by the hypervisor. When a packet
arrives at the NIC, it is classified by a hardware L2 sorter and
then sent to the pool assigned to the packet’s hardware address
or VLAN tag. It is then transferred via direct memory access to
the guest OS memory space. Since data is transferred directly
to and from a VM without the intervention of a software
switch, SR-IOV removes the CPU from the process of moving
data to and from a virtual machine.

2) Software Switches: The Linux bridge is a layer 2 soft-
ware switch included with the Linux kernel, and is commonly
used to connect two Ethernets together. In virtualization, the
bridge is typically used to switch packets between VMs and to
external hosts over a physical interface. Performance compared
to a hardware switch is dependent on system load [13].

Open vSwitch8 (OVS) is an open source OpenFlow [14]
capable virtual switch that is commonly used in a virtualized
environment to interconnect VMs within a host. In flow based
networks, a network node has capabilities that identify a flow
from Open vSwitch Database management protocol and exe-
cute appropriate actions for the matched flow. Two components
of OVS are user-mode daemon and kernel forwarding module.
Whenever the first packet of a new flow passes through the
OVS kernel module, it is sent to OVS daemon which evaluates
the OpenFlow rules, accepts or drops the packet and installs the
corresponding per-flow forwarding rule into the kernel module.

III. PERFORMANCE COMPARISON

Since chains of VNFs are meant to replace fast, high
throughput hardware middleboxes, the maximum throughput,
latency cost, and delay variation of the service chain is of
primary importance. Throughput can be addressed to an extent
by horizontal scaling, but there will always be a minimum
delay cost of the chain even with minimal load. Previous
work has found that virtualization can introduce throughput
instability and abnormal delay variations to the network traffic
[15].

All our experiments were conducted on bare metal in-
stances in CloudLab [16]. Each physical machine was a
Dell C8220 server, with dual Intel Xeon E5-2660v2 10-core
2.20Ghz CPUs, 256GB ECC RAM, and Intel 82599SE 2-port
10Gbe network interface controller (NIC). In each experiment,
machines were co-located on the same rack and connected

8http://openvswitch.org

Fig. 2. Latency and standard deviation of various-sized Ethernet packets from
an external host to processes in Docker containers, using different networking
technologies.

by two networks: a 1Gbps control network, and a 10Gbps
experiment network linked to a Dell Force10 S6000 switch.

All machines ran Ubuntu 14.04 LTS with the 3.13.0-57
low latency Linux kernel. In all experiments, task pinning and
kernel scheduling exclusion were used to ensure that kernel
threads, hardware interrupt servicing threads, and user threads
were run on separate cores within the same NUMA node.
While this approach explicitly disallows L1 and L2 cache reuse
between threads, the lesser degree of context switching allows
us to obtain more reproducible results.

In our experiment configurations, interfaces are added to
containers using network namespaces. SR-IOV VFs are created
by the OS after setting the num_vfs parameter of the NIC.
OVS and bridge use virtual Ethernet device pairs assigned
to the switch and the container. These device pairs, as well
as macvlan subinterfaces, are created with the ip command.
Interfaces are then moved into the container’s network names-
pace, similar to the direct assignment of a physical interface
to a container.

Packet send and receive timestamps were recorded for
measurements of jitter and lateness, a method validated by
[17] and [18], and collected using tcpdump9. Measurements of
latency were conducted using Netperf 2.6.010. Ethernet frame
sizes of 64, 128, 256, 512, 1024, 1280, and 1514 bytes were
chosen according to the standard network device benchmarking
methodology established by RFC 2544 [19].

A. Baseline Performance

To establish a set of baseline performance comparisons, we
evaluated each of the networking mechanisms for connecting
processes in three environments – Docker containers, Xen
virtual machines, and running natively on the host – and using
three metrics: latency, jitter, and efficiency. In each test, UDP
packets were sent from a client running on an external host to
a server running on the virtualization host.

1) Latency: We first evaluated the networking technolo-
gies using latency to compare the costs of their different

9http://www.tcpdump.org
10http://www.netperf.org

Fig. 3. Latency and standard deviation of 64-byte Ethernet packets from an
external host to processes running natively, in Docker containers, and in Xen
virtual machines.

software stacks. Fig. 2 illustrates the results. We found that
for each packet size, device virtualization mechanisms such
as macvlan and SR-IOV incurred less processing delay than
software switches. On average, the Linux bridge and OVS
increased latency 3.2% and 4.9% over the native network stack,
respectively, while macvlan and SR-IOV increased the latency
by 1.1% and 1.0%.

We then compared latency cost of sending packets to
Docker containers, Xen virtual machines, and host native
processes. The results in Fig. 3 show that with each networking
technology, containerized applications carry an additional la-
tency cost (2.6%-16.1%) compared to native applications, but
less of a penalty than the equivalent Xen VMs (53.9%-92.3%).
Our findings of higher mean latency with Xen agree with those
of other researchers [18].

2) Jitter: Next, we measured the delay variation (i.e., jitter)
of packets sent from an external host to a receiver on the
virtualization host using each of the network technologies.
Ethernet frames of 64 bytes were generated at a constant
bitrate of 130Mb/s, and samples were taken excluding the
head and tail of the stream. Jitter was calculated according to
the standard set forth in [20], designed to account for clock
skew between the sender and receiver, and defined as:

D(i, j) = (Rj −Ri)− (Sj − Si)

J(i) = J(i− 1) +
|D(i− 1, i)| − J(i− 1)

16

where D(i, j) is the difference between packet spacing at the
sender and receiver, S and R are the sending and arrival
timestamps of a series of packets I , and J(i) is a continuous
calculation with the gain parameter 1/16 for noise reduction.

As maximum delay is also an important metric in NFV as
late packets influence packet loss ratio[21], we also measured
the lateness of packets relative to the minimum observed delay
time. Fig. 4 illustrates the results, which are detailed in Tables
I and II. In our experiments, we found macvlan to have the
most stable jitter and lateness, while the Linux bridge and OVS
experienced frequent delays in the milliseconds, despite a low
mean variation. Included are results of a Xen VM receiving
packets through OVS, which experienced significantly higher

Fig. 4. Packet delay variation (jitter) of 64-byte Ethernet packets received by
native processes, using different network technologies. Measurements using
Xen virtual machines and OVS are included for comparison.

Fig. 5. Computational efficiency and standard deviation of networking
mechanisms forwarding 64-byte Ethernet packets from an external host to a
Docker container, classified into user processes, kernel processes, and interrupt
servicing.

variation than a native process served by OVS, along with a
many packets (0.61%) arriving out of order.

TABLE I. PACKET DELAY VARIATION (μsec)

direct macvlan SR-IOV bridge OVS Xen+OVS

n 50000

min 0.17 2.57 3.00 1.60 1.35 1.42

max 7.50 10.25 27.97 20.71 24.47 18644.02

x̄ 0.87 6.79 7.96 6.76 6.96 265.36

s 0.69 0.55 1.87 3.43 3.71 1233.03

TABLE II. PACKET LATENESS (μsec)

direct macvlan SR-IOV bridge OVS Xen+OVS

n 50000

max 214 114 391 3326 9727 72867

x̄ 41.40 12.22 53.83 1685.29 6068.86 782.85

s 40.49 5.88 43.23 1181.90 2289.98 6015.96

3) Efficiency: While latency is an important metric, it is
not necessarily an indicator of the throughput of the system.
We measured the efficiency of each networking mechanism by
sending a controlled-rate stream of 64-byte packets (˜64Kpps)
from an external host to a receiver within a Docker container,
while observing the CPU usage as reported by the system.
Fig. 5 shows the results according to user, hardware interrupt,

Fig. 6. Round trip time of various-sized packets between two containers on
the same host, classified by networking technology.

and other kernel threads. We found that SR-IOV had nearly
the same computational efficiency as direct assignment of
the interface, while macvlan, the Linux bridge, and OVS
increased overhead per packet substantially (11.2%, 53.4%,
26.6% respectively). As SR-IOV does not involve the CPU in
packet switching, the low overhead is expected.

B. VNF Chain Performance

In addition to the latency cost imposed by each networking
technology on packets to and from the outside network, we
measured the cost of transfers between containers on the
same host. This could be an important metric for optimally
deploying VNF instances, as co-located containers should save
physical network traffic. For this experiment, we measured the
round trip time between containers using each of the different
networking technologies.

Fig. 7. Experiment architecture for simulated chains of VNFs. Probe packets
emitted by the sender are routed through each VNF in the chain. Responses
by the receiver bypass the VNF host.

As shown in Fig. 6, the macvlan bridge is a very efficient
mechanism. It becomes apparent with these results, however,
that a naı̈ve approach can be detrimental. SR-IOV, which is
very efficient at egressing packets to the physical interface,
incurs a large cost to transport packets across the PCI bus
for classification by the NIC. Furthermore, the cost seems to
increase linearly with packet size with SR-IOV. This suggests
that other, perhaps hybrid schemes for packet forwarding may
be required to take advantage of SR-IOV in certain service
chain deployments.

Fig. 8. Relative delay cost of packet-forwarding chains of VNFs on one host,
classified by networking technology.

Fig. 9. Delay variation of varying-length packet-forwarding chains of VNFs
on one host, classified by networking technology.

We next evaluated the networking technologies for perfor-
mance in varying length chains of packet processing functions.
For these experiments, we used the platform shown in Fig. 7,
where packets are sent from the client, routed through a series
of VNFs on the container host, and received by a server. The
round trip is completed by directly sending replies from the
server to the client without routing through the container host.

To prototype VNF logic, we used the Click Modular
Router [22]. Click is a software package that uses a GraphML-
like script language to configure and link packet processing
components. This method of linking components gives it the
speed of any compiled packet processing program, with the
flexibility of a scripted language. We used Click to write
a simple VNF that rewrote source and destination MAC
addresses on each packet and forwarded them to the next VNF
in the chain.

TABLE III. SERVICE CHAIN LENGTH CORRELATION (R2)

macvlan SR-IOV bridge OVS

round trip time 0.968 0.970 0.981 0.994

packet delay variation 0.963 0.920 0.965 0.964

With each network technology, we observed a linear corre-
lation (r2≥ 0.968) between the round trip time of packets and
the number of VNFs in the service chain they passed through,
detailed in Table III. We also observed linear correlation

(r2≥ 0.963) between packet delay variation and the length of
the chain for macvlan, bridge, and OVS. The jitter measured
using SR-IOV did not correlate as well (r2=0.920), and was
more variable, likely due to the naı̈ve intra-host implemen-
tation being tested. Our results, visualized in Figs. 8 and 9,
show that the differences in delay and jitter are magnified by
multiple containers running on the same host. We also noted
that the Linux bridge had substantially higher delay variation in
these experiments than in the interhost configuration, perhaps
suggesting that the variation occurred in passing packets from
the bridge to the network interface.

IV. CONCLUSIONS

Our results support our hypothesis that OS-level virtual-
ization can offer network performance benefits compared to
hardware virtualization. In every case, Docker containers have
lower latency cost and lower variability than equivalent Xen
VMs running the same software.

In the case of ingress and egress of packets over a physical
network interface, both macvlan and SR-IOV show lower mean
latency and more predictable variation than the Linux bridge
and OVS. Furthermore, in both the bridge and OVS we observe
latency spikes in the milliseconds that could affect packet
deadlines.

Between containers on the same host, we observe that OVS
produces similar delay cost to macvlan, while SR-IOV incurs
much larger costs by offloading the switching to a PCIe device.
This result seems to be amplified by service chaining VNFs,
while macvlan and OVS perform similarly even in longer
chains.

In our evaluation, we find that while the Linux bridge and
Open vSwitch have acceptable performance for many applica-
tions, the demanding use case of NFV is sufficient motivation
to seek more efficient technologies. We hope that this research
motivates further investigations into efficient network I/O in
the NFV context and other areas where lightweight containers
can provide more efficient virtualization.

V. RELATED WORK

There exists a small body of research related to high
performance networking of applications in containers. [23]
compares the performance of LXC containers to KVM VMs
using macvlan and SR-IOV. This work focuses on namespaced
routing within the Linux kernel, and has limited applicability
to user-space applications typically required by more complex
VNFs in containers. In a previous study [24], the same team
performed an in-depth analysis of SR-IOV and macvlan for
network device virtualization, but did not examine user-space
networking.

Other works [25], [4], [26], [27] have compared the
networking aspects of OS-level virtualization solutions, and
explore the mechanisms for container network isolation that
lead to a general performance advantage. However, these
studies do not consider alternative I/O solutions to the Linux
bridge.

Some studies have explored the performance benefits of
advanced networking technologies in more traditional contexts.
In [28], the authors use DPDK to allow a polling L2 switch

to service many (thousands) of tiny service-chained network
functions, using a variety of memory access and blocking
schemes. The NFs in their work reside in user space on
the host machine, which theoretically should provide similar
performance to containerization. However, the need for re-
source isolation and security warrant an investigation of similar
technology in the container context.

We believe that our work is complementary to previous
work in the field, in that it sheds light on alternative mecha-
nisms designed for use with paravirtualization that can provide
benefits in use cases where high networking performance is
required.

VI. FUTURE WORK

One area which deserves more consideration is the effect of
latency and jitter on packet throughput and predictable delays
in a VNF service chain. A related direction that could be
explored is how packet train dispersion [29] is affected by
factors such as chaining VNFs with multiple stages of buffer-
ing and transmission burst compression due to virtualization
[18]. Connecting traffic burstiness to real world NFV use cases
is an area of future inquiry.

While we took great care to use CPU pinning to make our
results as reproducible as possible, we did note that the context
switches, cache coherency, and CPU package colocation of
associated user processes, hardware interrupt servicing, and
other kernel threads can affect the latency and throughput of
packet processing applications. We expect that variations in
packet latency will only grow as hosts become loaded, as
noted in analysis of PlanetLab [17]. There is a large body of
existing work on multicore scheduling and performance, and
more work is needed to connect this body of knowledge to the
new packet processing and orchestration challenges posed by
NFV.

One notable networking technology that may be important
to the feasibility of NFV on standard x86 hardware is Intel’s
Data Plane Development Kit (DPDK)11, a multicore program-
ming framework that is most notable for its high performance
poll mode driver (PMD). The PMD allows for scheduling
CPU cores to the task of polling the network device and
delivering packets directly to the application, without the use
of kernel interrupts. In online sources and our own preliminary
experiments, this method has shown to be many times more
efficient in situations where the network link is highly utilized.
The NFV industry has shown great interest in DPDK, and
some academic exploration has been undertaken [30], [28].
The evaluation of DPDK and other similar userspace I/O
technologies in relation to containers is another area of future
inquiry.

ACKNOWLEDGMENT

This work was supported in part by funds from Dell
Corporation and through NSF #1523314. This work does not
necessarily represent the opinions of the National Science
Foundation. We gratefully acknowledge contributions from
Prof. James Martin.

11http://dpdk.org

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[2] ETSI, “Network Functions Virtualisation: An introduction, bene-
fits, enablers, challenges and call for action,” 2012. Available at
https://portal.etsi.org/nfv/nfv white paper.pdf.

[3] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and
modeling the performance in Xen-based virtual cluster environment,”
in High Performance Computing and Communications (HPCC), 12th
IEEE International Conference on, pp. 273–280, IEEE, 2010.

[4] S. Soltesz, H. Ptzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, pp. 275–287, ACM, 2007.

[5] J. Fink, “Docker: a Software as a Service, Operating System-Level
Virtualization Framework,” Code4Lib Journal, vol. 25, 2014.

[6] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing
and live migration,” in Proceedings of the Linux Symposium, pp. 85–92,
2008.

[7] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “ClickOS and the art of network function virtualization,” in
Networked Systems Design and Implementation (NSDI), 11th USENIX
Symposium on, pp. 459–473, 2014.

[8] S. Yangui, M. Mohamed, S. Tata, and S. Moalla, “Scalable service
containers,” in Cloud Computing Technology and Science (CloudCom),
IEEE Third International Conference on, pp. 348–356, IEEE, 2011.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[10] N. Regola and J.-C. Ducom, “Recommendations for virtualization
technologies in high performance computing,” in Cloud Computing
Technology and Science (CloudCom), IEEE Second International Con-
ference on, pp. 409–416, IEEE, 2010.

[11] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating Xen for router virtualization,” in Computer Commu-
nications and Networks (ICCCN), 16th International Conference on,
pp. 1256–1261, IEEE, 2007.

[12] L. Fang, R. Zhang, and M. Taylor, “The evolution of carrier Ethernet
services — requirements and deployment case studies,” Communica-
tions Magazine, IEEE, vol. 46, no. 3, pp. 69–76, 2008.

[13] J. T. Yu, “Performance evaluation of Linux bridge,” in Telecommunica-
tions System Management Conference, 2004.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[15] G. Wang and T. E. Ng, “The impact of virtualization on network per-
formance of Amazon EC2 data center,” in Computer Communications
(INFOCOM), International Conference on, pp. 1–9, IEEE, 2010.

[16] R. Ricci and E. Eide, “Introducing CloudLab: scientific infrastructure
for advancing cloud architectures and applications,” ;login: the USENIX
Magazine, vol. 39, no. 6, pp. 36–38, 2014.

[17] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using PlanetLab for
network research: myths, realities, and best practices,” ACM SIGOPS
Operating Systems Review, vol. 40, no. 1, pp. 17–24, 2006.

[18] J. Whiteaker, F. Schneider, and R. Teixeira, “Explaining packet delays
under virtualization,” ACM SIGCOMM Computer Communication Re-
view, vol. 41, no. 1, pp. 38–44, 2011.

[19] S. Bradner and J. McQuaid, “Benchmarking methodology for network
interconnect devices,” March 1999. RFC 2544.

[20] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” July 2003. RFC 3550.

[21] ETSI, “Network Functions Virtualisation (NFV): Ser-
vice Quality Metrics,” ETSI GS NFV-INF 010, 2014.
Available at http://www.etsi.org/deliver/etsi gs/NFV-
INF/001 099/010/01.01.01 60/gs NFV-INF010v010101p.pdf.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer Systems
(TOCS), vol. 18, no. 3, pp. 263–297, 2000.

[23] M. S. Rathore, M. Hidell, and P. Sjdin, “KVM vs LXC: Comparing
Performance and Isolation of Hardware-assisted Virtual Routers,” Amer-
ican Journal of Networks and Communications, vol. 2, no. 4, pp. 88–96,
2013.

[24] M. S. Rathore, M. Hidell, and P. Sjodin, “PC-based router virtualization
with hardware support,” in Advanced Information Networking and
Applications (AINA), IEEE 26th International Conference on, pp. 573–
580, IEEE, 2012.

[25] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based virtu-
alization for high performance computing environments,” in Parallel,
Distributed and Network-Based Processing (PDP), 21st Euromicro
International Conference on, pp. 233–240, IEEE, 2013.

[26] F. L. Camargos, “Virtualization of Linux servers,” in Proceedings of the
Linux Symposium, 2008.

[27] D. Beserra, E. D. Moreno, P. T. Endo, J. Barreto, D. Sadok, and
S. Fernandes, “Performance analysis of LXC for HPC environments,”
in Complex, Intelligent, and Software Intensive Systems (CISIS), Ninth
International Conference on, pp. 358–363, IEEE, 2015.

[28] I. Cerrato, M. Annarumma, and F. Risso, “Supporting Fine-Grained
Network Functions through Intel DPDK,” in Software Defined Networks
(EWSDN), Third European Workshop on, pp. 1–6, IEEE, 2014.

[29] R. Jain, S. Routhier, et al., “Packet trains–measurements and a new
model for computer network traffic,” Selected Areas in Communica-
tions, IEEE Journal on, vol. 4, no. 6, pp. 986–995, 1986.

[30] G. Pongracz, L. Molnar, and Z. L. Kis, “Removing roadblocks from
SDN: OpenFlow software switch performance on Intel DPDK,” in
Software Defined Networks (EWSDN), Second European Workshop on,
pp. 62–67, IEEE, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

