
When NFV Meets ANN:
Rethinking Elastic Scaling for ANN-based NFs

Menghao Zhang?, Jiasong Bai?, Guanyu Li?, Zili Meng?, Hongda Li†, Hongxin Hu†, Mingwei Xu?
?Tsinghua University †Clemson University

Abstract—Network Function Virtualization (NFV) provides
middleboxes with substantial elasticity from a system level, and
Artificial Neural Network (ANN) empowers middleboxes with
great intelligence from an algorithm-level perspective. However,
when ANN-based Network Functions (NFs) want to take advan-
tage of the elasticity of NFV, our study finds that huge gaps
exist between the existing approaches and the ideal goals for
the elasticity control of ANN-based NFs. By revealing the key
differences between ANN-based NFs and traditional NFs, we
propose LEGO, an innovative framework that provides systematic
mechanisms for traffic splitting, instance partition and runtime
management to enable correct and efficient scaling of ANN-based
NFs. Preliminary implementation and evaluation demonstrate
the feasibility and effectiveness of the LEGO system. The major
purpose of this paper is to highlight these challenges and sketch
out a new roadmap towards ANN-based NFV paradigm.

I. INTRODUCTION

Network Functions (NFs), or middleboxes, have become
a crucial part of today’s Internet. Complementary to the
forwarding functions provided by routers, middleboxes play
an important role to ensure security (e.g., firewall, intrusion
prevention/detection system), improve performance (e.g., load
balancing, WAN optimizer) and provide other novel network
functionalities [1], [2].

While traditional NFs are deployed as proprietary mono-
lithic software running on dedicated hardware, network op-
erators are moving towards Network Function Virtualization
(NFV), in which middlebox functionalities are moved out of
dedicated physical boxes into virtual appliances that can be
run on commodity servers. Since it emerges, NFV has quickly
gotten significant attention from both academia and industry,
and hundreds of industry participants are planning to deploy,
or have already deployed it to achieve high elasticity and to
reduce management expenses.

Orthogonal and complementary to the system-level solu-
tions like NFV, which virtualizes the softwarized NFs, another
trend in improving NFs origins more from an algorithm-
level perspective. With the wide applications and successes of
Artificial Neural Network (ANN) [3] in computer vision [4],
natural language processing [5], [6], and voice recognition
[7] recently, the networking community has also started to
embrace ANN to tackle some thorny problems that long
exist in networking. In particular, some researchers begin
to adopt ANN to compose sophisticated NFs to achieve
advanced packet processing to satisfy the performance and
security goals [8], [9], [10], [11], [12], [13]. As reported

previously [14], [1], traditional NFs suffer from high infras-
tructure and maintenance costs, requiring significant manual
efforts and operator expertise to make effective decisions.
For example, in an Intrusion Detection System (IDS), new
attacks emerge every day, and the operators need to update
the signature inspection rules all the time [8]. In a network-
wide load balancing, hand-crafted heuristics for varying traffic
load, flow size distribution, traffic concentration are chosen
intuitively to make traffic optimization decisions. Even in this
way, the decisions are always suboptimal and lead to overall
bandwidth waste [9]. ANN provides a good opportunity to
tackle these problems, since it is good at learning sophisticated
non-linear concepts and making near-optimal decisions under
complex, uncertain environments [3]. These characteristics
of ANN reduce management costs and operational expenses
significantly.

Despite the substantial benefits of these two separated trends
for improving NFs, it is still unknown whether ANN-based
NFs could take advantage of the elasticity property provided
by NFV. Our study reveals that there is a huge gap between the
existing solutions for NFV and adopting them to ANN-based
NFs, and several key challenges must be carefully addressed to
fully achieve the vision for elastic ANN-based NFs. The goal
for elastic scaling of ANN-based NFs is to satisfy the tight
Service Level Agreement (SLAs) and minimize the operation
costs under frequently varied traffic volume. As mentioned
in previous works [15], [16], [17], the scaling of NFs must
carefully fulfill the properties of correctness and efficiency.
However, ANN-based NFs are much different from traditional
rule-based NFs, and they have a monolithic, unseparated NF
state and are greedy on computation resources. These unique
characteristics make traditional NF scaling approaches (e.g.,
Split/Merge [15], OpenNF [16], S6 [17]) either incorrect or
inefficient (details in §II-B). A more advanced coordination
mechanism among networks, processing and NF states is
highly desired to take full advantage of the benefit of ANN-
based NFs, which should simultaneously accomplish correct-
ness and efficiency properties.

To bridge the above gaps, in this paper, we propose LEGO,
a novel framework that provides coordinated control for
NF instances and network forwarding to allow efficient and
correct scaling of ANN-based NFs. LEGO jointly manages
the traffic splitting and NF instance organization to tackle
the problems mentioned above, with three essential elements.
First, LEGO proposes an effective traffic splitting mechanism
combined with the inherent neural network structure to guar-978-1-7281-2700-2/19/$31.00 2019 c© IEEE

antee correctness. Second, LEGO proposes to break up the
ANN-based NF instances into smaller bricks, which could
be moved and replicated independently. This is inspired by
the recent trend towards micro-services [18], which could
greatly reduce the composition complexity of ANN-based NFs
and potentially achieve high resource efficiency. Third, LEGO
proposes to continuously monitor the resource utilization of
each brick with the LEGO controller, and replicate/merge any
overloaded/underloaded bricks, which could further achieve
resource efficiency for each machine and across machines.

As a proof of concept, we leverage a state-of-the-art ANN-
based IDS, Kitsune [8], and apply our approach to carry out
the scaling experiments. Our preliminary results demonstrate
that our approach is highly effective to achieve the efficiency
and correctness of the elastic scaling for the ANN-based
IDS. Looking forward, there are apparently a lot of questions
remaining to be answered. For instance, can we adapt the
LEGO framework to other ANN-based NFs? How to enhance
the performance and fault tolerance of ANN-based NFs? Can
we further reduce the management expense of ANN-based
NFs? These issues require cooperations among researchers
from diverse fields to move towards a new ANN-based NFV
paradigm.

In summary, the contributions of this paper are as follows:
• We study the structure of ANN-based NFs and identify

the key differences from traditional NFs (§II).
• We propose LEGO, an ANN-based NF scaling frame-

work, with three essential elements to obtain the benefit
of efficient and correct scaling (§III).

• We implement a proof-of-concept prototype with a typi-
cal ANN-based NF instance, KitSune, and conduct the
preliminary experiment to show the effectiveness of
LEGO (§IV).

Finally, we conclude this paper with our ongoing explo-
rations in Section V, and hope that this paper could act as a
catalyst to spark the debate on this impending field.

II. BACKGROUND AND MOTIVATION

A. Background on ANN-based NFs

Inspired by biological neural networks, Artificial Neural
Network (ANN) exploits many layers of non-linear informa-
tion processing for supervised or unsupervised feature extrac-
tion [19]. Each layer is a collection of processing units called
neurons, and each neuron is followed by an activation function,
which is used to generate the neuron’s output. And the inter-
connection between neurons of two layers is associated with
parameters to determine how much one neuron could affect
another. With these weighted interconnections, the output of
each neuron is transferred to all neurons in the next layer
to activate neurons of the next layer iteratively. Before being
used to infer new samples, ANN should be trained first. In
particular, training ANN is an optimization procedure, where
the weight parameters of each interconnection should learn the
most appropriate value through the training dataset, aiming
to capture the complex patterns of non-linear relationships

Packets Extract
Features

Feature
Vectors

Neural Network
based Algorithm
(e.g. RDL, CNN,

Autoencoder)

Make
Decision

NN
Outputs

Input
Hidden

Output

Parameters Parameters

Figure 1: A General Architecture of ANN-based NF.

between the inputs and the outputs. The often-used learning
algorithm in ANN is back propagation algorithm, in which
training samples are forwarded and the output of the network is
compared with the desired target. Then the weight parameters
would be tuned according to this difference.

To reduce management costs and make near-optimal de-
cisions, recently there is a growing trend to leverage ANN
to support various NFs [8], [9], [10], [20], [11], [12], [13].
Kitsune [8] employs an ensemble of neural networks called
Autoencoders to implement a plug-and-play IDS, which can
learn to detect attacks without supervision and detect new
emerging attacks without the deep involvements of network
operators. Similarly, based on Autoencoder and Convolutional
Neural Network (CNN), BoTShark [13] is able to detect
centralized or P2P botnets effectively without operators’ ex-
pertise. To automate traffic optimization process (e.g., load
balancing) in the data center, AuTO [9] develops a two-
level Deep Reinforcement Learning (DRL) system, which
achieves significant performance improvement compared to
standard human-crafted heuristics. All these examples achieve
pretty promising results, which demonstrate the substantial
advantages brought by ANN.

From these typical ANN-based NFs, we summarize the
general architecture of ANN-based NFs, as shown in Figure 1.
Generally, the first step of ANN-based NFs is to extract a
series of feature vectors from packet batching. Then ANN-
based NFs would assign these feature vectors to the input
layer and utilize different ANN (e.g. Autoencoder, CNN, DRL,
RNN, etc.) to approximate these data patterns in unsupervised
or supervised manners. Finally, a decision is made based
on the outputs of ANN to obtain the final results, such as
intrusion alerts in an ANN-based IDS or selected forwarding
paths in an ANN-based load balancing. Actually, this general
architecture is perfectly applicable for all examples above. For
Kitsune [8], it first adopts incremental statistics maintained
over a damped window to extract the features of traffic,
then selects an ensemble of Autoencoders as the fundamental
neural network with the root mean squared error (RMSE)
computed as its outputs, and finally decides whether an alert
is produced based on the RMSE values. In BotShark [13], it
first employs specific tools to extract NetFlow which record
information of connections, then applies stacked Autoencoders
to learn implicit features from NetFlows and utilizes CNNs to
implement a classifier with all features as input, and finally
selects Softmax to make a decision based on outputs of
CNNs. In AuTO [9], the monitoring module first collects a
large amount of flow information, then DRL module learns
the characteristics of traffic with normalized throughput as
rewards, and finally DRL agent determines rates, routes, and
priorities for long flows automatically. Obviously, AuTO also

satisfies such a general architecture.

B. Observation and Motivation

To satisfy the tight SLAs and minimize operation costs
under frequently changing traffic volume, ANN-based NFs
also need to create or destruct their NF instances dynamically,
as traditional NFV instances do [15], [16], [17]. However,
to achieve this in a correct and efficient way is non-trivial,
and our study reveals that a more advanced structure for
NF instance along with a more superior network forwarding
technique is required, which is beyond the capability that state-
of-the-art approaches (e.g., Split/Merge [15], OpenNF [16])
can provide. The rationales behind this gap lie in the unique
characteristics of ANN-based NFs, as summarized in the
following points:

First, ANN-based NFs replace classical separated rule-based
states with monolithic numerical representation. Such systems
learn to perform tasks by considering examples, generally
without being programmed with any task-specific rules. Tra-
ditional NFs maintain the network states (including static and
dynamic state as illustrated in Split/Merge [15], OpenNF [16],
StatelessNF [21] and S6 [17]) as separated rules. Although
there is dependence between different rules, the correlation
among these rules is limited. As a result, when we want
to create/destruct an instance, we can easily replicate/merge
the state to the instance and steer the traffic accordingly. In
contrast, ANN-based NFs implicitly encode all these rules
with weighted parameters, and they behave as a monolithic
and identical part, making the state-oriented traffic splitting
a challenging problem. If this problem is not properly dealt,
the correctness cannot be guaranteed. For example, an alert
raised in one ANN-based IDS instance may be lost if the
traffic is split to multiple instances carelessly. Therefore, an
advanced approach is in dire need to split the traffic correctly
and effectively.

Second, ANN-based NFs are more sophisticated than tra-
ditional NFs, and they usually require more computation
resources to conduct packet batching, traffic feature extracting,
feature vector mapping, training and inference1, and context-
related decision making. According to our experiments on two
typical IDSes, when allocated with one CPU core, Kitsune,
an ANN-based IDS, can only process hundreds of packets per
second, while Snort, a classic signature-based IDS, is able
to process tens of thousands of packets in one second. This
implies the resource-intensive characteristic of ANN-based
NFs. As a result, if ANN-based NFs are scaled monolithically
as traditional NFs, the scaling procedure would be slow be-
cause of tremendous resource allocation, and many fractional
resources are unusable by the ANN-based NF instances. As a
result, an effective approach is urgently needed to reconstruct
the structure of ANN-based NFs to allow efficient scaling.

These characteristics mentioned above make the traditional
NF scaling approaches no longer applicable, and a new frame-
work customized for ANN-based NFs is needed to carry out

1Even in most cases, training task is conducted offline and beforehand.
Inference task must be finished online and timely.

SDN
Controller

SDN Switch

ANN-based NF Instance

LEG
O

 A
gent

ANN-based NF Instance

LE
G

O
 A

ge
nt

Traffic Clusters 1 Traffic Clusters 2
�3.1

�3.2 �3.2

�3.3 �3.3

Incoming Traffic
Figure 2: LEGO Architecture.

the efficient and correct scaling to fully achieve the benefit of
ANN-based NF virtualization.

III. OUR APPROACH: LEGO

In this section, we propose a coordination framework,
namely LEGO, to help efficiently and correctly scale the ANN-
based NFs. The overall architecture of LEGO is shown in
Figure 2. In general, LEGO consists of three key components.
First, LEGO introduces an effective traffic splitting mechanism
combined with the inherent neural network structure to guar-
antee correctness (§III-A). Second, LEGO proposes to break
up the ANN-based NF instances into smaller NF bricks to
achieve independent and fast replication, which could reduce
the composition complexity of ANN-based NFs and pave
the way for high resource efficiency (§III-B). Third, LEGO
continuously monitors the resource utilization of each brick
with the LEGO controller, and replicates/merges any brick
that is overloaded/underloaded, which could further achieve
resource efficiency for machine clusters (§III-C).

A. Traffic Splitting

To scale in/out ANN-based NFs, we first need to split the
traffic across multiple NF instances. An essential requirement
for traffic splitting is correctness, i.e., the output of the NF
instances before and after the traffic splitting should be the
same. For traditional NFs, traffic can be split directly at an
explicit granularity (e.g., flow) with certain NF state replicated
to the new instances. However, this is not applicable for
ANN-based NFs, since NF states are encoded into monolithic,
unseparated weighted parameters. As a result, traffic cannot
be split explicitly as traditional NFs. If not dealt carefully,
this may lose essential features for feature extractor and
further compromise detection soundness. To see why, consider
a scenario where an ANN-based IDS instance, Kitsune, is
deployed at the Internet of Things (IoT) gateway, which can
effectively detect the port scanning attacks. When the Kitsune
instance is overloaded and must be scaled out to satisfy the
SLAs, we first create a new Kitsune instance with weighted
parameters already loaded. Then we steer half of the traffic
to the new instance to conduct the inference. Because of
the traffic splitting, the feature extractor cannot retrieve the
complete feature vectors as origin, and the RSME values
outputted from the ANN may be small than the original
anomaly threshold.

To address this problem, we first revisit the basic processing
procedure of ANN-based NFs. As shown in Figure 1, raw
packets are first processed by feature extractor in batch, to

Algorithm 1: Traffic Splitting Granularity Selection.
Input: Granularity Set D = {header}.
Output: Selected Granularity.

1 foreach header ∈ D do
2 header.indegree = 0

3 foreach header1 ∈ D do
4 foreach header2 ∈ D/{header1} do
5 if header1 ⊂ header2 then
6 header1.indegree += 1

7 return all header where header.indegree == 0

retrieve the feature vectors that will be the input of ANN.
To make the output of NF instances before and after traffic
splitting the same, the input of the ANN should also be the
same, which requires our traffic splitting mechanism to respect
the scheme of the feature extractor. Generally speaking, the
feature extractor is used to capture the context and purpose of
each packet traversing the network, and can be regarded as a
mapping from batched packets into a set of feature vectors,
which are usually a composition of the characteristics of the
batched packets, including the packet protocol, packet size,
packet number in a time window, packet jitter and so on.
We observe that although the characteristics of the batched
packets are wide and various, the only factor that affects the
traffic splitting is the packet protocol, since other factors are
orthogonal to the packet protocol property. As a result, if
our traffic splitting mechanism respects the packet protocol
property of the feature extractor, the input of ANN will remain
the same. Taking Kitsune as an example, it extracts a behavior
snapshot of hosts and protocols communicated with the given
packets, which consists of 115 traffic statistics summarizing all
of the traffic originating from this packet’s source MAC and
IP address (SrcMAC-SrcIP), this packet’s source IP (SrcIP),
this packet’s source and destination IP (SrcIP-DstIP), and this
packet’s source and destination TCP/UDP sockets (Socket).
In this context, the packet protocol property consists of four
groups, SrcMAC-IP, SrcIP, SrcIP-DstIP and Socket. In general,
there are two kind of relationships between these groups:
inclusion ⊂, i.e., Group1 ⊂ Group2, and overlapping ∩, i.e.,
(Group1 ∩Group2 6= ∅) ∧ (Group1 ∩Group2 6= Group1) ∧
(Group1 ∩ Group2 6= Group2). For example, SrcMAC-IP
⊂ SrcIP, and SrcIP-DstIP ∩ SrcMAC-IP. To select the ideal
traffic splitting granularity, we design an algorithm as shown in
Algorithm 1. The input of this algorithm is the protocol groups,
and the output is the selected splitting granularity, which can
be categorized into two cases:

• One result, which means the incoming traffic can be
split based on certain granularity. The feature extractor of
Kitsune falls into this category, so the traffic can be split
with SrcIP granularity into different Kitsune instances.

• Two or more results, which indicates that the incoming
traffic cannot be explicitly split. We have to replicate
some relevant packet to the corresponding NF instances
to guarantee correctness, or trade-off some correctness
for overhead. We leave the detailed exploration of this
part as our future work.

B. ANN-based NF Partition

Monolithically provisioned ANN-based NFs are inefficient
in scaling and resource allocation, since ANN-based NFs
require more computational and memory resources to con-
duct packet batching, traffic feature extracting, feature vector
mapping, training and inference, and context-related decision
making. Scaling a monolithic ANN-based NF instance is slow
because of tremendous memory initiation for the new instance,
incurring significant latency of the traffic. Besides, as ANN-
based NFs consume more resources than traditional NFs,
monolithic provisioning of ANN-based NFs results in more
waste of fractional resources in the environment. For example,
assume an ANN-based NF requires 8 CPU cores to run. If the
NF is provisioned with a single virtual machine, one should
assign 8 CPU cores to run the virtual machine. In this case, if
the physical machine only has 4 CPU cores available, there is
no way for the ANN-based NF to make use of these 4 cores.
Therefore, breaking a monolithic ANN-based NFs down into
pieces is critical to enable elastic scaling for ANN-based NFs,
which is much more necessary than traditional NFs. We choose
to partition a monolithic ANN-based NFs into several small
units, which are named as bricks in our paper.
Partition Principle. Partitioning a monolithic NF instance into
bricks is non-trivial, and it requires an intricate balance: if
a brick contains too little functionalities, there would be too
many inter-bricks communications, leading to high overhead
and considerable latency; if a brick is too large, the goals
for fine-grained composition and coordination of NF bricks
could not be reached easily, which would fail to satisfy the
requirements of resource efficiency. Therefore, we present our
two rules of thumb for partitioning. First, the cost incurred
by brick order book-keeping and communications between
bricks should be much less than the cost of replicating a new
brick. Second, each brick should have as less independence
as possible to the other bricks. Combined with the unique
characteristics of ANN-based NFs, we present some prelimi-
nary results as a useful start point. As shown in Table I, we
categorize these NF bricks into three types: Feature Extractor
as the preprocessing for ANN, different types of ANNs,
and Decision Maker as the processing for sample results or
environments, also for output representation. We are seeking
for more ANN-based NF instances and developing more NF
bricks to make our system more general and effective. Note
that in the current context we do not further partition the ANN
into small bricks based on different layers. This is because the
ANN in today’s NFs is not so deep and can be executed very
quickly, for example, the autoencoders in Kitsune have only
three layers, the DNN in AuTo has only ten layers. The deep
reason behind this may be that the networked systems have a
high requirement for ANN’s execution speed, as networking
is an online system essentially.
Brick Component and Structure. Brick is the basic unit for
functionalities, and it must have the following components:
(1) An identifier to identify its type and its serial number,
which is exposed to the LEGO controller for easier manage-

Table I: Partial list of NF Bricks.
Brick Name Description Category

Packet Batching Read a batch of packets in memory Feature Extractor
Feature Quantization Select a set of metadatas and Quantize them into feature vectors Feature Extractor

Feature Mapping Map the features into the input of ANN Feature Extractor
Supervised Learning Network The network learns the desired output for a given input or pattern ANN

Unsupervised Learning Network The network learns without specifying the desired output ANN
Hybrid Learning Network The network combining the two properties above ANN

Rewarding Functions Map the environment rewarding into the output of ANN Decision Maker
Sample Result Quantization Map the sample result into the output of ANN Decision Maker

ment and maintenance. (2) A routing table, which steers the
traffic to the next-hop bricks. (3) A northbound interface to
receive and report necessary information from/to the LEGO
controller. (4) A west-east interface to communicate with
its replica bricks. Inter-bricks communication takes place via
Inter-Process Communication (IPC) in the same server, and
could extend to Remote Procedure Call (RPC) if the resource
on one machine is inadequate. The controller could forge some
faked packet headers to steer some packets from one server
to another [22]. Each brick adopts a stateless programming
model, i.e., the state could be logically separated from the
processing logic. Since the state and the processing logic are
in the same machine in most cases, this programming model
will not degrade the performance for processing but provide
substantial elasticity.

C. Runtime Management

LEGO has a controller, which is responsible for allocating
the resource and scheduling the NF bricks at runtime. The
resource allocation and brick scheduling mechanism are NF-
specific, i.e., it should be adapted to the structure of that
specific ANN-based NF. Scheduling decision includes the
initial and subsequent placement of NF bricks (bricks graphs),
and the assignment of traffic to NF bricks. The goal of
the LEGO controller is to monitor the resource consumption
of each NF brick and balance the loads across NF brick
replicas to efficiently satisfy the tight SLAs. During the bricks
graph construction procedure, the controller first accepts the
overall SLA requirements from the network tenants, then it
obtains the brick-level deadlines by dividing the end-to-end
level constraints among the bricks along a path of the graph,
proportionally to their computation costs.
Brick Cost Estimation. To make the resource allocation
decision, we first need to know the resource cost of each
brick, which mainly include (1) the amount of computation
and memory resource to process an batch of input data, (2)
the number of output data to be transmitted to a downstream
brick, and the corresponding bandwidth. Since the resource
costs of each brick under the same input data are relatively
stable, we could resort to an analysis of source code (e.g.,
using existing timing analysis tools [23]) or pre-execution
under real-world traces. Sometime the cost may change due
to runtime dynamic [24], we could update the cost estimation
periodically.
Runtime Monitoring and Brick Replication. At runtime,
the LEGO controller detects bottlenecks in a brick graph by

Table II: Traffic Splitting with Different Methods.
Methods Original SrcMAC-

SrcIP
SrcIP SrcIP-

DstIP
Socket

RMSE 10.117 10.082 10.083 2.964 2.973

monitoring a set of critical metrics of each brick, including
the input and output queues, the CPU load, memory and I/O
utilization, and the load of the switches. When detecting a
bottleneck brick, the controller replicates a replica, re-allocates
the resource, re-assigns the traffic, and updates the routing
table. This procedure first takes place in one machine, since
the bricks in one machine could share the same memory
and achieve high resource efficiency. If the resource of one
machine is exhausted, there are two approaches we could
take. First, allocate a complete brick graph in a new machine
with the complete weighted parameters and steer the traffic
accordingly. Second, allocate only the overloaded bricks in
the new machine, and steer the inter-bricks traffic to the new
bricks. This could achieve high resource efficiency but at the
expense of the hard merging mechanism at the downstream
bricks. The choice of these two designs should consider the
physical locations of the NF clusters. We leave the detailed
replicating/merging mechanisms as our future work.

IV. CASE STUDY

To validate the effectiveness of our LEGO framework, we
developed a proof-of-concept prototype based on Kitsune [8].
We partition Kitsune into bricks as the manners mentioned
in §III-B, and connect these bricks into a brick graph. We
implement an initial version of the LEGO controller adapted
from POX [25]. Our experiments are conducted in two directly
connected servers, one for deploying Kitsune or LEGO, and
the other for replaying real-world traffics.

To explore the effectiveness of the proposed traffic splitting
scheme in LEGO, we split Mirai traffic [26] into three parts
with different granularities, replay these parts respectively on
the original Kitsune and measure the average RMSE of all
packets as the metric of correctness. As shown in Table II,
when traffic is split with SrcIP granularity (the output of
our algorithm), it will produce the largest RMSE value and
generate the closest results with the original single-instance
case. We can also see that SrcMAC-SrcIP produces a similar
RSME value with SrcIP, because the distribution of traffic
splitting under these two circumstances are almost the same.
While for other cases, the RSME values are much smaller,
which indicates that some anomalies are ignored because of
careless traffic splitting schemes. To conclude, traffic split-

�
	��������
� ���

�
����
������	���

������
�������

��������
������ �����

��������
�������

����� 	������
������ �����

�������������
����������������

������
��������
������

���
�����

���
������

Figure 3: Kitsune’s LEGO Brick Graph.

Kitsune LEGO0
250
500
750

1000
1250
1500
1750
2000

Pa
ck

et
s P

ro
ce

ss
in

g
Ra

te Training
Inference

Figure 4: Throughput Improvement by LEGO Brick Partition
and Placement.

ting granularity selection algorithm in LEGO guarantees the
correctness for traffic splitting when scaling in/out the ANN-
based IDS.

To demonstrate the efficiency of LEGO for resource uti-
lization, we reconstruct Kitsune with LEGO bricks, as shown
in Figure 3. We assign one separated CPU core for each
brick of the LEGO Kitsune while 5 cores are allocated to
the original Kitsune to guarantee fairness. When the LEGO
Kitsune is running, the LEGO controller monitors the resource
occupation of each brick, and detects that the bottleneck
exists at Unsupervised Learning Network (Autoencoder) brick
where it takes almost 100% CPU core. As a consequence, the
LEGO controller replicates a replica and re-assigns a new CPU
core for the Autoencoder. In contrast, for original Kitsune,
with the computation-intensive Autoencoder module becoming
the bottleneck, it could not make full use of CPU cores
in one machine and is limited by the processing capacity
of the Autoencoder. As shown in Figure 4, LEGO nearly
double the throughput within one machine. In conclusion, the
LEGO Kitsune is able to achieve higher resource utilization,
benefiting from its NF partitioning and runtime management.

V. CONCLUSION AND FUTURE WORK

In this paper, we identify the key challenges to enable
correct and efficient scaling of ANN-based NFs, and sketch the
vision of LEGO, an innovative framework to provide advanced
mechanisms for traffic splitting, instance partition and runtime
management to achieve such a goal. We further apply our
methodology to a state-of-the-art ANN-based IDS, Kitsune,
to demonstrate the effectiveness of our approach.

Nevertheless, our current design, prototype and experimen-
tal results are in a very preliminary stage, which leaves a lot of
explorations to continue. In our ongoing work, we are planning
to investigate the cases where traffic cannot be split perfectly
and how to achieve correctness with the minimal replication
packets, partition ANN into different layers to get small bricks
if necessary, apply our approach to more ANN-based NFs
to demonstrate the generality of LEGO, see how to further

enhance the performance and fault tolerance of ANN-based
NFs, and consider more complex scenarios.

VI. ACKNOWLEDGEMENT

We thank anonymous reviewers for their valuable com-
ments. Menghao, Jiasong, Guanyu and Zili are also sincerely
graceful for their former Ph.D. advisor, Jun Bi from Tsinghua
University, for his strong support. This work is supported by
the National Key R&D Program of China (2017YFB0801701)
and the National Science Foundation of China (No.61872426).

REFERENCES

[1] J. Sherry and et al., “Making middleboxes someone else’s problem:
network processing as a cloud service,” SIGCOMM, vol. 42, no. 4, pp.
13–24, 2012.

[2] Z. Wang and et al., “An untold story of middleboxes in cellular
networks,” in SIGCOMM, vol. 41, no. 4. ACM, 2011, pp. 374–385.

[3] Wikipedia, “Artificial neural network,” 2018,
https://en.wikipedia.org/wiki/Artificial neural network.

[4] A. Krizhevsky and et al., “Imagenet classification with deep convolu-
tional neural networks,” in NIPS, 2012, pp. 1097–1105.

[5] A. Vaswani and et al., “Attention is all you need,” in NIPS, 2017, pp.
5998–6008.

[6] J. Devlin and et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[7] G. Hinton and et al., “Deep neural networks for acoustic modeling in
speech recognition,” IEEE Signal processing magazine, vol. 29, 2012.

[8] Y. Mirsky and et al., “Kitsune: an ensemble of autoencoders for online
network intrusion detection,” NDSS, 2018.

[9] L. Chen and et al., “Auto: Scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization,” SIGCOMM, 2018.

[10] M. Cheng and et al., “Ms-lstm: A multi-scale lstm model for bgp
anomaly detection,” in ICNP. IEEE, 2016, pp. 1–6.

[11] L. He and et al., “Vtc: Machine learning based traffic classification as
a virtual network function,” in SDN & NFV. ACM, 2016, pp. 53–56.

[12] R. Doshi and et al., “Machine learning ddos detection for consumer
internet of things devices,” arXiv preprint arXiv:1804.04159, 2018.

[13] S. Homayoun and et al., “Botshark: A deep learning approach for botnet
traffic detection,” Cyber Threat Intelligence, pp. 137–153, 2018.

[14] A. Bremler-Barr and et al., “Openbox: a software-defined framework for
developing, deploying, and managing network functions,” in SIGCOMM.
ACM, 2016, pp. 511–524.

[15] S. Rajagopalan and et al., “Split/merge: System support for elastic
execution in virtual middleboxes.” in NSDI, vol. 13, 2013, pp. 227–240.

[16] Gember-Jacobson and et al., “Opennf: Enabling innovation in network
function control,” in SIGCOMM, vol. 44, no. 4. ACM, 2014, pp. 163–
174.

[17] S. Woo and et al., “Elastic scaling of stateful network functions,” in
NSDI. USENIX Association, 2018.

[18] ThoughtWorks, “Microservices: Lessons from the frontline,” 2018,
https://www.thoughtworks.com/insights/blog/microservices-lessons-
frontline.

[19] L. Deng and et al., “Deep learning: methods and applications,” Founda-
tions and Trends R© in Signal Processing, vol. 7, no. 3–4, pp. 197–387,
2014.

[20] J. Saxe and et al., “A deep learning approach to fast, format-agnostic
detection of malicious web content,” arXiv preprint arXiv:1804.05020,
2018.

[21] M. Kablan and et al., “Stateless network functions: Breaking the tight
coupling of state and processing.” in NSDI, 2017, pp. 97–112.

[22] S. Vissicchio and et al., “Central control over distributed routing,” in
CCR, vol. 45, no. 4. ACM, 2015, pp. 43–56.

[23] S. Chattopadhyay and et al., “A unified wcet analysis framework for
multicore platforms,” TECS, vol. 13, no. 4s, p. 124, 2014.

[24] T. Li and el al., “Efficient operating system scheduling for performance-
asymmetric multi-core architectures,” in SC. IEEE, 2007, pp. 1–11.

[25] J. Mccauley, “Pox: A python-based openflow controller,” 2014.
[26] Y. Meidan and et al., “N-baiot: Network-based detection of iot botnet

attacks using deep autoencoders,” 2018.

